Automating the data integration and ETL pipelines through machine learning to handle massive datasets in the Enterprise
Keywords:
ETL pipelines, machine learning, automationAbstract
As organizations increasingly rely on vast amounts of data to drive strategic decisions, managing and integrating these massive datasets has become a critical challenge for modern enterprises. Although fundamental to data processing, traditional ETL (Extract, Transform, Load) pipelines often need help to scale effectively in response to the growing complexity, volume, and variety of data. Integrating machine learning (ML) into ETL pipelines offers a powerful solution to this challenge, enabling the automation of data workflows and enhancing the overall efficiency & scalability of data integration processes. By leveraging machine learning algorithms, enterprises can automate complex tasks like anomaly detection, schema matching, and data transformation, essential for ensuring high-quality, consistent data throughout the pipeline. Moreover, machine learning can facilitate real-time data processing, allowing businesses to analyze & act on data as it is generated, ensuring more timely and informed decision-making. This article explores the transformative potential of machine learning in revolutionizing traditional ETL processes, focusing on how ML-driven automation can significantly reduce manual intervention, improve data quality, and enhance the overall performance of data integration systems. The article also addresses the practical challenges of implementing ML in enterprise-scale data pipelines, such as the need for high-quality labeled data, model training, and overcoming integration complexities. It discusses the impact of machine learning on various stages of ETL, from data extraction to transformation and loading. It highlights the potential benefits of incorporating ML, including faster processing times, improved data accuracy, & enhanced scalability. Ultimately, machine learning presents a way not only to automate but also to elevate the performance of ETL pipelines, making them more adaptable to the increasing demands of modern data-driven enterprises while maintaining robust data governance and quality standards.
Downloads
References
Figueiras, P., Costa, R., Guerreiro, G., Antunes, H., Rosa, A., Jardimgonçalves, R., & Eng, D. D. (2017). User Interface Support for a Big ETL Data Processing Pipeline.
Deekshith, A. (2019). Integrating AI and Data Engineering: Building Robust Pipelines for Real-Time Data Analytics. International Journal of Sustainable Development in Computing Science, 1(3), 1-35.
Kimball, R., & Caserta, J. (2004). The data warehouse ETL toolkit. John Wiley & Sons.
Godinho, T. M., Lebre, R., Almeida, J. R., & Costa, C. (2019). Etl framework for real-time business intelligence over medical imaging repositories. Journal of digital imaging, 32, 870-879.
Khandelwal, M. (2018). A Service Oriented Architecture For Automated Machine Learning At Enterprise-Scale (Master's thesis).
Ebadi, A., Gauthier, Y., Tremblay, S., & Paul, P. (2019, December). How can automated machine learning help business data science teams?. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA) (pp. 1186-1191). IEEE.
Coté, C., Gutzait, M. K., & Ciaburro, G. (2018). Hands-On Data Warehousing with Azure Data Factory: ETL techniques to load and transform data from various sources, both on-premises and on cloud. Packt Publishing Ltd.
Armoogum, S., & Li, X. (2019). Big data analytics and deep learning in bioinformatics with hadoop. In Deep learning and parallel computing environment for bioengineering systems (pp. 17-36). Academic Press.
Ali, S. M. F. (2018, March). Next-generation ETL Framework to Address the Challenges Posed by Big Data. In DOLAP.
Popp, M. (2019). Comprehensive support of the lifecycle of machine learning models in model management systems (Master's thesis).
Zdravevski, E., Apanowicz, C., Stencel, K., & Slezak, D. (2019). Scalable cloud-based ETL for self-serving analytics.
Casters, M., Bouman, R., & Van Dongen, J. (2010). Pentaho Kettle solutions: building open source ETL solutions with Pentaho Data Integration. John Wiley & Sons.
Chakraborty, J., Padki, A., & Bansal, S. K. (2017, January). Semantic etl—State-of-the-art and open research challenges. In 2017 IEEE 11th International Conference on Semantic Computing (ICSC) (pp. 413-418). IEEE.
Agrawal, P., Arya, R., Bindal, A., Bhatia, S., Gagneja, A., Godlewski, J., ... & Wu, M. C. (2019, June). Data platform for machine learning. In Proceedings of the 2019 international conference on management of data (pp. 1803-1816).
Coelho, L. G. S. (2018). Web Platform For ETL Process Management In Multi-Institution Environments (Master's thesis, Universidade de Aveiro (Portugal)).
Gade, K. R. (2019). Data Migration Strategies for Large-Scale Projects in the Cloud for Fintech. Innovative Computer Sciences Journal, 5(1).
Gade, K. R. (2018). Real-Time Analytics: Challenges and Opportunities. Innovative Computer Sciences Journal, 4(1).
Komandla, V. Enhancing Security and Fraud Prevention in Fintech: Comprehensive Strategies for Secure Online Account Opening.
Komandla, V. Transforming Financial Interactions: Best Practices for Mobile Banking App Design and Functionality to Boost User Engagement and Satisfaction.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
License Terms
Ownership and Licensing:
Authors of research papers submitted to Distributed Learning and Broad Applications in Scientific Research retain the copyright of their work while granting the journal certain rights. Authors maintain ownership of the copyright and have granted the journal a right of first publication. Simultaneously, authors agree to license their research papers under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
License Permissions:
Under the CC BY-NC-SA 4.0 License, others are permitted to share and adapt the work, as long as proper attribution is given to the authors and acknowledgement is made of the initial publication in the journal. This license allows for the broad dissemination and utilization of research papers.
Additional Distribution Arrangements:
Authors are free to enter into separate contractual arrangements for the non-exclusive distribution of the journal's published version of the work. This may include posting the work to institutional repositories, publishing it in journals or books, or other forms of dissemination. In such cases, authors are requested to acknowledge the initial publication of the work in this journal.
Online Posting:
Authors are encouraged to share their work online, including in institutional repositories, disciplinary repositories, or on their personal websites. This permission applies both prior to and during the submission process to the journal. Online sharing enhances the visibility and accessibility of the research papers.
Responsibility and Liability:
Authors are responsible for ensuring that their research papers do not infringe upon the copyright, privacy, or other rights of any third party. Scientific Research Canada disclaims any liability or responsibility for any copyright infringement or violation of third-party rights in the research papers.
If you have any questions or concerns regarding these license terms, please contact us at editor@dlabi.org.