Data Lakes vs. Data Warehouses: Comparative Analysis on When to Use Each, with Case Studies Illustrating Successful Implementations
Keywords:
Data Lake, Big Data, Data ManagementAbstract
Data lakes and warehouses are integral to modern data management strategies, yet they serve distinct purposes and excel in different scenarios. This paper explores the fundamental differences between data lakes and data warehouses, focusing on their architectures, use cases, and operational benefits to help organizations select the right solution for their needs. Data lakes offer a flexible environment, storing vast amounts of structured and unstructured data, often at a lower cost, and are particularly beneficial for data science applications and exploratory analytics where schema-on-read is required. In contrast, data warehouses provide structured data storage with optimized querying capabilities, ideal for business intelligence and analytics workflows that demand high performance and data accuracy. By examining several pre-2019 case studies from diverse industries, this analysis highlights how leading organizations have leveraged these technologies. For example, a financial institution implementing a data warehouse optimized its reporting efficiency, enabling faster regulatory compliance.
Meanwhile, a technology company utilized a data lake to enable machine learning innovation, aggregating raw data from multiple sources into one centralized repository. Through these real-world examples, we present best practices and common pitfalls, offering readers insights into the decision-making process when evaluating data lakes and data warehouses for their organizational objectives. This comparative analysis ultimately aims to clarify when each approach is most effective, guiding businesses toward a data infrastructure that aligns with their analytics and operational needs.
Downloads
References
Jarke, M., & Quix, C. (2017). On warehouses, lakes, and spaces: the changing role of conceptual modeling for data integration. Conceptual Modeling Perspectives, 231-245.
Pasupuleti, P., & Purra, B. S. (2015). Data lake development with big data. Packet Publishing Ltd.
Mohanty, S., Jagadeesh, M., & Srivatsa, H. (2013). Big data imperatives: Enterprise ‘Big Data’warehouse,‘BI’implementations and analytics. Apress.
Vaisman, A., & Zimányi, E. (2014). Data warehouse systems. Data-Centric Systems and Applications, 9.
Collier, K. (2012). Agile analytics: A value-driven approach to business intelligence and data warehousing. Addison-Wesley.
Dyché, J. (2000). e-Data: Turning data into information with data warehousing. Addison-Wesley Professional.
Lunce, S. E., Lunce, L. M., Kawai, Y., & Maniam, B. (2006). Success and failure of pure‐play organizations: Webvan versus Peapod, a comparative analysis. Industrial Management & Data Systems, 106(9), 1344-1358.
Rivest, S. (2001). Toward better support for spatial decision making: defining the characteristics of spatial on-line analytical processing (SOLAP). Geomatica, 55(4), 539-555.
Sujitparapitaya, S., Janz, B. D., & Gillenson, M. (2003). The contribution of IT governance solutions to the implementation of data warehouse practice. Journal of Database Management (JDM), 14(2), 52-69.
Prabhu, C. S. R. (2008). Data warehousing: concepts, techniques, products and applications. PHI Learning Pvt. Ltd..
Haarbrandt, B., Tute, E., & Marschollek, M. (2016). Automated population of an i2b2 clinical data warehouse from an openEHR-based data repository. Journal ofbiomedical informatics, 63, 277-294.
Alam, I., Antunes, A., Kamau, A. A., Ba Alawi, W., Kalkatawi, M., Stingl, U., & Bajic, V. B. (2013). INDIGO–INtegrated data warehouse of MIcrobial GenOmes with examples from the red sea extremophiles. PloS one, 8(12), e82210.
Mohanty, S. (2007). Data Warehousing: Design, development and best practices. South Asian Journal of Management, 144-146.
Hackathorn, R. (2002). Current practices in active data warehousing. Bolder Technology, 23-25.
Chen, H. M., Kazman, R., Haziyev, S., & Hrytsay, O. (2015, May). Big data system development: An embedded case study with a global outsourcing firm. In 2015 IEEE/ACM 1st International Workshop on Big Data Software Engineering (pp. 44-50). IEEE.
Gade, K. R. (2017). Integrations: ETL/ELT, Data Integration Challenges, Integration Patterns. Innovative Computer Sciences Journal, 3(1).
Gade, K. R. (2017). Migrations: Challenges and Best Practices for Migrating Legacy Systems to Cloud-Based Platforms. Innovative Computer Sciences Journal, 3(1).
Gade, K. R. (2018). Real-Time Analytics: Challenges and Opportunities. Innovative Computer Sciences Journal, 4(1).
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
License Terms
Ownership and Licensing:
Authors of research papers submitted to Distributed Learning and Broad Applications in Scientific Research retain the copyright of their work while granting the journal certain rights. Authors maintain ownership of the copyright and have granted the journal a right of first publication. Simultaneously, authors agree to license their research papers under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
License Permissions:
Under the CC BY-NC-SA 4.0 License, others are permitted to share and adapt the work, as long as proper attribution is given to the authors and acknowledgement is made of the initial publication in the journal. This license allows for the broad dissemination and utilization of research papers.
Additional Distribution Arrangements:
Authors are free to enter into separate contractual arrangements for the non-exclusive distribution of the journal's published version of the work. This may include posting the work to institutional repositories, publishing it in journals or books, or other forms of dissemination. In such cases, authors are requested to acknowledge the initial publication of the work in this journal.
Online Posting:
Authors are encouraged to share their work online, including in institutional repositories, disciplinary repositories, or on their personal websites. This permission applies both prior to and during the submission process to the journal. Online sharing enhances the visibility and accessibility of the research papers.
Responsibility and Liability:
Authors are responsible for ensuring that their research papers do not infringe upon the copyright, privacy, or other rights of any third party. Scientific Research Canada disclaims any liability or responsibility for any copyright infringement or violation of third-party rights in the research papers.
If you have any questions or concerns regarding these license terms, please contact us at editor@dlabi.org.