Graph Neural Networks for Malware Detection

A Novel Approach to Cybersecurity

Authors

  • Emily Johnson Assistant Professor, Department of Computer Science, Tech University, Metropolis, Countryland Author

Keywords:

Graph Neural Networks, Malware Detection, Cybersecurity, Machine Learning, Malware Behavior, Classification

Abstract

In the ever-evolving landscape of cybersecurity, traditional methods for malware detection are increasingly challenged by sophisticated threats that exploit conventional detection techniques. This paper explores the application of Graph Neural Networks (GNNs) for malware detection, emphasizing their ability to uncover hidden relationships between data points and enhance the identification of malicious software. By leveraging the structural information inherent in data, GNNs offer a novel approach to understanding complex interactions within malware behavior and its associated artifacts. This research introduces a framework for implementing GNNs in the context of malware detection, detailing their architecture, operational mechanisms, and advantages over traditional methods. Through a series of experiments, the efficacy of GNNs is demonstrated, showcasing their improved performance in classifying and detecting malware samples compared to established machine learning techniques. The findings indicate that GNNs not only improve detection accuracy but also reduce false positive rates, contributing to more effective cybersecurity defenses. This paper concludes with a discussion on the implications of GNNs in future cybersecurity applications and the potential for further research in this promising domain.

Downloads

Download data is not yet available.

References

Vangoor, Vinay Kumar Reddy, et al. "Zero Trust Architecture: Implementing Microsegmentation in Enterprise Networks." Journal of Artificial Intelligence Research and Applications 4.1 (2024): 512-538.

Gayam, Swaroop Reddy. "Artificial Intelligence in E-Commerce: Advanced Techniques for Personalized Recommendations, Customer Segmentation, and Dynamic Pricing." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 105-150.

Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Predictive Maintenance of Banking IT Infrastructure: Advanced Techniques, Applications, and Real-World Case Studies." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 86-122.

Putha, Sudharshan. "AI-Driven Predictive Analytics for Maintenance and Reliability Engineering in Manufacturing." Journal of AI in Healthcare and Medicine 2.1 (2022): 383-417.

Sahu, Mohit Kumar. "Machine Learning for Personalized Marketing and Customer Engagement in Retail: Techniques, Models, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 219-254.

Kasaraneni, Bhavani Prasad. "AI-Driven Policy Administration in Life Insurance: Enhancing Efficiency, Accuracy, and Customer Experience." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 407-458.

Kondapaka, Krishna Kanth. "AI-Driven Demand Sensing and Response Strategies in Retail Supply Chains: Advanced Models, Techniques, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 459-487.

Kasaraneni, Ramana Kumar. "AI-Enhanced Process Optimization in Manufacturing: Leveraging Data Analytics for Continuous Improvement." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 488-530.

Pattyam, Sandeep Pushyamitra. "AI-Enhanced Natural Language Processing: Techniques for Automated Text Analysis, Sentiment Detection, and Conversational Agents." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 371-406.

Kuna, Siva Sarana. "The Role of Natural Language Processing in Enhancing Insurance Document Processing." Journal of Bioinformatics and Artificial Intelligence 3.1 (2023): 289-335.

George, Jabin Geevarghese, et al. "AI-Driven Sentiment Analysis for Enhanced Predictive Maintenance and Customer Insights in Enterprise Systems." Nanotechnology Perceptions (2024): 1018-1034.

P. Katari, V. Rama Raju Alluri, A. K. P. Venkata, L. Gudala, and S. Ganesh Reddy, “Quantum-Resistant Cryptography: Practical Implementations for Post-Quantum Security”, Asian J. Multi. Res. Rev., vol. 1, no. 2, pp. 283–307, Dec. 2020

Karunakaran, Arun Rasika. "Maximizing Efficiency: Leveraging AI for Macro Space Optimization in Various Grocery Retail Formats." Journal of AI-Assisted Scientific Discovery 2.2 (2022): 151-188.

Sengottaiyan, Krishnamoorthy, and Manojdeep Singh Jasrotia. "Relocation of Manufacturing Lines-A Structured Approach for Success." International Journal of Science and Research (IJSR) 13.6 (2024): 1176-1181.

Paul, Debasish, Gunaseelan Namperumal, and Yeswanth Surampudi. "Optimizing LLM Training for Financial Services: Best Practices for Model Accuracy, Risk Management, and Compliance in AI-Powered Financial Applications." Journal of Artificial Intelligence Research and Applications 3.2 (2023): 550-588.

Namperumal, Gunaseelan, Akila Selvaraj, and Yeswanth Surampudi. "Synthetic Data Generation for Credit Scoring Models: Leveraging AI and Machine Learning to Improve Predictive Accuracy and Reduce Bias in Financial Services." Journal of Artificial Intelligence Research 2.1 (2022): 168-204.

Soundarapandiyan, Rajalakshmi, Praveen Sivathapandi, and Yeswanth Surampudi. "Enhancing Algorithmic Trading Strategies with Synthetic Market Data: AI/ML Approaches for Simulating High-Frequency Trading Environments." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 333-373.

Pradeep Manivannan, Amsa Selvaraj, and Jim Todd Sunder Singh. “Strategic Development of Innovative MarTech Roadmaps for Enhanced System Capabilities and Dependency Reduction”. Journal of Science & Technology, vol. 3, no. 3, May 2022, pp. 243-85

Yellepeddi, Sai Manoj, et al. "Federated Learning for Collaborative Threat Intelligence Sharing: A Practical Approach." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 146-167.

Published

18-10-2024

How to Cite

[1]
Emily Johnson, “Graph Neural Networks for Malware Detection: A Novel Approach to Cybersecurity”, Distrib Learn Broad Appl Sci Res, vol. 10, pp. 345–352, Oct. 2024, Accessed: Nov. 07, 2024. [Online]. Available: https://dlabi.org/index.php/journal/article/view/161

Similar Articles

71-80 of 113

You may also start an advanced similarity search for this article.