The Role of AI-Driven Energy Efficiency Solutions in Sustainable U.S. Medicine Manufacturing
Keywords:
Energy Efficiency, Medicine ManufacturingAbstract
In 2021, $580 billion was spent on medicine manufacturing in the United States. As a result, medicine manufacturing is one of the most valuable industrial sectors in the United States, creating a process that serves as the gateway for creating pharmaceuticals that treat wide-ranging diseases, from COVID-19 to cancer to prostate difficulties. In this process, compound molecules are generated through a series of complex chemical reactions that typically consume tremendous amounts of energy. At the same time, compound molecules generally have to go through purification processes to remove impurities. The purification processes target the removal of specific impurities while consuming additional energy. Most pharmaceuticals are produced through large-scale continuous manufacturing processes; therefore, improving the energy efficiency of these generic compounds can have a significant impact on overall energy savings. Recently, machine learning algorithms and problem-solving methods, such as constrained optimization, deep reinforcement learning, and generative adversarial networks, have emerged to augment enterprise energy management, process efficiency, and self-consumption of renewable energy, thus facilitating the development of smart factories [1]. Among these algorithms and methods, reinforcement learning in combination with first-principles models provides a powerful framework to proactively produce timely and knowledgeable control actions under sudden market and process constraints. Since time is limited, thus only a representative subset of AI-driven solutions will be presented.
Downloads
References
Sengottaiyan, Krishnamoorthy, and Manojdeep Singh Jasrotia. "Relocation of Manufacturing Lines-A Structured Approach for Success." International Journal of Science and Research (IJSR) 13.6 (2024): 1176-1181.
Gayam, Swaroop Reddy. "Artificial Intelligence for Natural Language Processing: Techniques for Sentiment Analysis, Language Translation, and Conversational Agents." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 175-216.
Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Compliance and Regulatory Reporting in Banking: Advanced Techniques, Models, and Real-World Applications." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 151-189.
Putha, Sudharshan. "AI-Driven Natural Language Processing for Voice-Activated Vehicle Control and Infotainment Systems." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 255-295.
Sahu, Mohit Kumar. "Machine Learning Algorithms for Personalized Financial Services and Customer Engagement: Techniques, Models, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 6 (2020): 272-313.
Kasaraneni, Bhavani Prasad. "Advanced Machine Learning Models for Risk-Based Pricing in Health Insurance: Techniques and Applications." Australian Journal of Machine Learning Research & Applications 1.1 (2021): 170-207.
Kondapaka, Krishna Kanth. "Advanced Artificial Intelligence Models for Predictive Analytics in Insurance: Techniques, Applications, and Real-World Case Studies." Australian Journal of Machine Learning Research & Applications 1.1 (2021): 244-290.
Kasaraneni, Ramana Kumar. "AI-Enhanced Pharmacoeconomics: Evaluating Cost-Effectiveness and Budget Impact of New Pharmaceuticals." Australian Journal of Machine Learning Research & Applications 1.1 (2021): 291-327.
Pattyam, Sandeep Pushyamitra. "AI-Driven Data Science for Environmental Monitoring: Techniques for Data Collection, Analysis, and Predictive Modeling." Australian Journal of Machine Learning Research & Applications 1.1 (2021): 132-169.
Kuna, Siva Sarana. "Reinforcement Learning for Optimizing Insurance Portfolio Management." African Journal of Artificial Intelligence and Sustainable Development 2.2 (2022): 289-334.
Gayam, Swaroop Reddy, Ramswaroop Reddy Yellu, and Praveen Thuniki. "Artificial Intelligence for Real-Time Predictive Analytics: Advanced Algorithms and Applications in Dynamic Data Environments." Distributed Learning and Broad Applications in Scientific Research 7 (2021): 18-37.
Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Customer Behavior Analysis in Insurance: Advanced Models, Techniques, and Real-World Applications." Journal of AI in Healthcare and Medicine 2.1 (2022): 227-263.
Putha, Sudharshan. "AI-Driven Personalization in E-Commerce: Enhancing Customer Experience and Sales through Advanced Data Analytics." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 225-271.
Sahu, Mohit Kumar. "Machine Learning for Personalized Insurance Products: Advanced Techniques, Models, and Real-World Applications." African Journal of Artificial Intelligence and Sustainable Development 1.1 (2021): 60-99.
Kasaraneni, Bhavani Prasad. "AI-Driven Approaches for Fraud Prevention in Health Insurance: Techniques, Models, and Case Studies." African Journal of Artificial Intelligence and Sustainable Development 1.1 (2021): 136-180.
Kondapaka, Krishna Kanth. "Advanced Artificial Intelligence Techniques for Demand Forecasting in Retail Supply Chains: Models, Applications, and Real-World Case Studies." African Journal of Artificial Intelligence and Sustainable Development 1.1 (2021): 180-218.
Kasaraneni, Ramana Kumar. "AI-Enhanced Portfolio Optimization: Balancing Risk and Return with Machine Learning Models." African Journal of Artificial Intelligence and Sustainable Development 1.1 (2021): 219-265.
Pattyam, Sandeep Pushyamitra. "AI-Driven Financial Market Analysis: Advanced Techniques for Stock Price Prediction, Risk Management, and Automated Trading." African Journal of Artificial Intelligence and Sustainable Development 1.1 (2021): 100-135.
Kuna, Siva Sarana. "The Impact of AI on Actuarial Science in the Insurance Industry." Journal of Artificial Intelligence Research and Applications 2.2 (2022): 451-493.
Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Dynamic Pricing in Insurance: Advanced Techniques, Models, and Real-World Application." Hong Kong Journal of AI and Medicine 4.1 (2024): 258-297.
Selvaraj, Akila, Deepak Venkatachalam, and Gunaseelan Namperumal. "Synthetic Data for Financial Anomaly Detection: AI-Driven Approaches to Simulate Rare Events and Improve Model Robustness." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 373-425.
Paul, Debasish, Praveen Sivathapandi, and Rajalakshmi Soundarapandiyan. "Evaluating the Impact of Synthetic Data on Financial Machine Learning Models: A Comprehensive Study of AI Techniques for Data Augmentation and Model Training." Journal of Artificial Intelligence Research and Applications 2.2 (2022): 303-341.
Namperumal, Gunaseelan, Praveen Sivathapandi, and Deepak Venkatachalam. "The Role of Blockchain Technology in Enhancing Data Integrity and Transparency in Cloud-Based Human Capital Management Solutions." Journal of Artificial Intelligence Research and Applications 3.1 (2023): 546-582.
Soundarapandiyan, Rajalakshmi, Praveen Sivathapandi, and Akila Selvaraj. "Quantum-Resistant Cryptography for Automotive Cybersecurity: Implementing Post-Quantum Algorithms to Secure Next-Generation Autonomous and Connected Vehicles." Cybersecurity and Network Defense Research 3.2 (2023): 177-218.
Sudharsanam, Sharmila Ramasundaram, Akila Selvaraj, and Praveen Sivathapandi. "Enhancing Vehicle-to-Everything (V2X) Communication with Real-Time Telematics Data Analytics: A Study on Safety and Efficiency Improvements in Smart Cities." Australian Journal of Machine Learning Research & Applications 3.1 (2023): 461-507.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
License Terms
Ownership and Licensing:
Authors of research papers submitted to Distributed Learning and Broad Applications in Scientific Research retain the copyright of their work while granting the journal certain rights. Authors maintain ownership of the copyright and have granted the journal a right of first publication. Simultaneously, authors agree to license their research papers under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
License Permissions:
Under the CC BY-NC-SA 4.0 License, others are permitted to share and adapt the work, as long as proper attribution is given to the authors and acknowledgement is made of the initial publication in the journal. This license allows for the broad dissemination and utilization of research papers.
Additional Distribution Arrangements:
Authors are free to enter into separate contractual arrangements for the non-exclusive distribution of the journal's published version of the work. This may include posting the work to institutional repositories, publishing it in journals or books, or other forms of dissemination. In such cases, authors are requested to acknowledge the initial publication of the work in this journal.
Online Posting:
Authors are encouraged to share their work online, including in institutional repositories, disciplinary repositories, or on their personal websites. This permission applies both prior to and during the submission process to the journal. Online sharing enhances the visibility and accessibility of the research papers.
Responsibility and Liability:
Authors are responsible for ensuring that their research papers do not infringe upon the copyright, privacy, or other rights of any third party. Scientific Research Canada disclaims any liability or responsibility for any copyright infringement or violation of third-party rights in the research papers.
If you have any questions or concerns regarding these license terms, please contact us at editor@dlabi.org.