Change Management in Graph Analytics for Network Analysis and Visualization
Keywords:
Graph Analytics, Network AnalysisAbstract
Change management is crucial for effectively implementing graph analytics techniques in analyzing network data, which reveals complex relationships between entities. This paper explores various graph analytics methods that enhance network analysis and visualization, emphasizing their role in facilitating organizational adaptation to new data-driven strategies. We discuss the significance of graph analytics in understanding network structures, identifying key nodes, and detecting communities. Additionally, we examine visualization methods that improve the comprehension of network data, thereby aiding in decision-making processes. Through this paper, we provide a comprehensive overview of graph analytics in network analysis and visualization, highlighting their importance and applications across diverse domains while underscoring the need for change management in adopting these innovative techniques.
Downloads
References
Vemoori, Vamsi. "Envisioning a Seamless Multi-Modal Transportation Network: A Framework for Connected Intelligence, Real-Time Data Exchange, and Adaptive Cybersecurity in Autonomous Vehicle Ecosystems." Australian Journal of Machine Learning Research & Applications 4.1 (2024): 98-131.
Sadhu, Ashok Kumar Reddy, et al. "Enhancing Customer Service Automation and User Satisfaction: An Exploration of AI-powered Chatbot Implementation within Customer Relationship Management Systems." Journal of Computational Intelligence and Robotics 4.1 (2024): 103-123.
Tatineni, Sumanth. "Applying DevOps Practices for Quality and Reliability Improvement in Cloud-Based Systems." Technix international journal for engineering research (TIJER)10.11 (2023): 374-380.
Perumalsamy, Jegatheeswari, Chandrashekar Althati, and Lavanya Shanmugam. "Advanced AI and Machine Learning Techniques for Predictive Analytics in Annuity Products: Enhancing Risk Assessment and Pricing Accuracy." Journal of Artificial Intelligence Research 2.2 (2022): 51-82.
Pelluru, Karthik. "Enhancing Network Security: Machine Learning Approaches for Intrusion Detection." MZ Computing Journal 4.2 (2023).
Venkatasubbu, Selvakumar, Jegatheeswari Perumalsamy, and Subhan Baba Mohammed. "Machine Learning Models for Life Insurance Risk Assessment: Techniques, Applications, and Case Studies." Journal of Artificial Intelligence Research and Applications 3.2 (2023): 423-449.
Mohammed, Subhan Baba, Bhavani Krothapalli, and Chandrashekar Althat. "Advanced Techniques for Storage Optimization in Resource-Constrained Systems Using AI and Machine Learning." Journal of Science & Technology 4.1 (2023): 89-125.
Krothapalli, Bhavani, Lavanya Shanmugam, and Subhan Baba Mohammed. "Machine Learning Algorithms for Efficient Storage Management in Resource-Limited Systems: Techniques and Applications." Journal of Artificial Intelligence Research and Applications 3.1 (2023): 406-442.
Devan, Munivel, Chandrashekar Althati, and Jegatheeswari Perumalsamy. "Real-Time Data Analytics for Fraud Detection in Investment Banking Using AI and Machine Learning: Techniques and Case Studies." Cybersecurity and Network Defense Research 3.1 (2023): 25-56.
Althati, Chandrashekar, Jegatheeswari Perumalsamy, and Bhargav Kumar Konidena. "Enhancing Life Insurance Risk Models with AI: Predictive Analytics, Data Integration, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 3.2 (2023): 448-486.
Selvaraj, Amsa, Bhavani Krothapalli, and Lavanya Shanmugam. "AI and Machine Learning Techniques for Automated Test Data Generation in FinTech: Enhancing Accuracy and Efficiency." Journal of Artificial Intelligence Research and Applications 4.1 (2024): 329-363.
Konidena, Bhargav Kumar, Jesu Narkarunai Arasu Malaiyappan, and Anish Tadimarri. "Ethical Considerations in the Development and Deployment of AI Systems." European Journal of Technology 8.2 (2024): 41-53.
Devan, Munivel, et al. "AI-driven Solutions for Cloud Compliance Challenges." AIJMR-Advanced International Journal of Multidisciplinary Research 2.2 (2024).
Katari, Monish, Gowrisankar Krishnamoorthy, and Jawaharbabu Jeyaraman. "Novel Materials and Processes for Miniaturization in Semiconductor Packaging." Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023 2.1 (2024): 251-271.
Tatineni, Sumanth, and Naga Vikas Chakilam. "Integrating Artificial Intelligence with DevOps for Intelligent Infrastructure Management: Optimizing Resource Allocation and Performance in Cloud-Native Applications." Journal of Bioinformatics and Artificial Intelligence 4.1 (2024): 109-142.
Sistla, Sai Mani Krishna, and Bhargav Kumar Konidena. "IoT-Edge Healthcare Solutions Empowered by Machine Learning." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.2 (2023): 126-135.
Katari, Monish, Lavanya Shanmugam, and Jesu Narkarunai Arasu Malaiyappan. "Integration of AI and Machine Learning in Semiconductor Manufacturing for Defect Detection and Yield Improvement." Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023 3.1 (2024): 418-431.
Tembhekar, Prachi, Munivel Devan, and Jawaharbabu Jeyaraman. "Role of GenAI in Automated Code Generation within DevOps Practices: Explore how Generative AI." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.2 (2023): 500-512.
Makka, A. K. A. “Implementing SAP on Cloud: Leveraging Security and Privacy Technologies for Seamless Data Integration and Protection”. Internet of Things and Edge Computing Journal, vol. 3, no. 1, June 2023, pp. 62-100, https://thesciencebrigade.com/iotecj/article/view/286.
Peddisetty, Namratha, and Amith Kumar Reddy. "Leveraging Artificial Intelligence for Predictive Change Management in Information Systems Projects." Distributed Learning and Broad Applications in Scientific Research 10 (2024): 88-94.
Venkataramanan, Srinivasan, et al. "Leveraging Artificial Intelligence for Enhanced Sales Forecasting Accuracy: A Review of AI-Driven Techniques and Practical Applications in Customer Relationship Management Systems." Australian Journal of Machine Learning Research & Applications 4.1 (2024): 267-287.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
License Terms
Ownership and Licensing:
Authors of research papers submitted to Distributed Learning and Broad Applications in Scientific Research retain the copyright of their work while granting the journal certain rights. Authors maintain ownership of the copyright and have granted the journal a right of first publication. Simultaneously, authors agree to license their research papers under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
License Permissions:
Under the CC BY-NC-SA 4.0 License, others are permitted to share and adapt the work, as long as proper attribution is given to the authors and acknowledgement is made of the initial publication in the journal. This license allows for the broad dissemination and utilization of research papers.
Additional Distribution Arrangements:
Authors are free to enter into separate contractual arrangements for the non-exclusive distribution of the journal's published version of the work. This may include posting the work to institutional repositories, publishing it in journals or books, or other forms of dissemination. In such cases, authors are requested to acknowledge the initial publication of the work in this journal.
Online Posting:
Authors are encouraged to share their work online, including in institutional repositories, disciplinary repositories, or on their personal websites. This permission applies both prior to and during the submission process to the journal. Online sharing enhances the visibility and accessibility of the research papers.
Responsibility and Liability:
Authors are responsible for ensuring that their research papers do not infringe upon the copyright, privacy, or other rights of any third party. Scientific Research Canada disclaims any liability or responsibility for any copyright infringement or violation of third-party rights in the research papers.
If you have any questions or concerns regarding these license terms, please contact us at editor@dlabi.org.