Clustering Algorithms - Hierarchical and Density-based: Analyzing hierarchical and density-based clustering algorithms for grouping similar data points together in unlabeled datasets

Authors

  • Dr. Felipe Bustamante Associate Professor of Industrial Engineering, University of Santiago de Chile Author

Keywords:

Data mining, Hierarchical clustering

Abstract

Clustering algorithms play a crucial role in unsupervised learning, enabling the grouping of similar data points into clusters. Hierarchical clustering and density-based clustering are two widely used approaches for this purpose. This paper provides a comprehensive analysis of these clustering algorithms, focusing on their principles, methodologies, strengths, and weaknesses. We discuss how hierarchical clustering builds a tree of clusters, allowing for a hierarchical representation of the data, while density-based clustering identifies regions of high density as clusters.

The paper explores the applications of these algorithms in various fields, including data mining, pattern recognition, and image analysis. We also discuss the challenges associated with these algorithms, such as scalability and parameter sensitivity, and propose potential solutions. Through experimental evaluations on benchmark datasets, we compare the performance of hierarchical and density-based clustering algorithms in terms of clustering quality, scalability, and robustness to noise.

Overall, this paper aims to provide a comprehensive understanding of hierarchical and density-based clustering algorithms, their applications, and their comparative analysis, offering insights into their effectiveness and limitations in real-world scenarios.

Downloads

Download data is not yet available.

References

Pulimamidi, Rahul. "Emerging Technological Trends for Enhancing Healthcare Access in Remote Areas." Journal of Science & Technology 2.4 (2021): 53-62.

Tillu, Ravish, Muthukrishnan Muthusubramanian, and Vathsala Periyasamy. "Transforming regulatory reporting with AI/ML: strategies for compliance and efficiency." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.1 (2023): 145-157.

K. Joel Prabhod, “ASSESSING THE ROLE OF MACHINE LEARNING AND COMPUTER VISION IN IMAGE PROCESSING,” International Journal of Innovative Research in Technology, vol. 8, no. 3, pp. 195–199, Aug. 2021, [Online]. Available: https://ijirt.org/Article?manuscript=152346

Tatineni, Sumanth. "Applying DevOps Practices for Quality and Reliability Improvement in Cloud-Based Systems." Technix international journal for engineering research (TIJER)10.11 (2023): 374-380.

Perumalsamy, Jegatheeswari, Chandrashekar Althati, and Muthukrishnan Muthusubramanian. "Leveraging AI for Mortality Risk Prediction in Life Insurance: Techniques, Models, and Real-World Applications." Journal of Artificial Intelligence Research 3.1 (2023): 38-70.

Venkatasubbu, Selvakumar, Subhan Baba Mohammed, and Monish Katari. "AI-Driven Storage Optimization in Embedded Systems: Techniques, Models, and Real-World Applications." Journal of Science & Technology 4.2 (2023): 25-64.

Pelluru, Karthik. "Advancing Software Development in 2023: The Convergence of MLOps and DevOps." Advances in Computer Sciences 6.1 (2023): 1-14.

Devan, Munivel, Lavanya Shanmugam, and Chandrashekar Althati. "Overcoming Data Migration Challenges to Cloud Using AI and Machine Learning: Techniques, Tools, and Best Practices." Australian Journal of Machine Learning Research & Applications 1.2 (2021): 1-39.

Mohammed, Subhan Baba, Bhavani Krothapalli, and Chandrashekar Althat. "Advanced Techniques for Storage Optimization in Resource-Constrained Systems Using AI and Machine Learning." Journal of Science & Technology 4.1 (2023): 89-125.

Krothapalli, Bhavani, Lavanya Shanmugam, and Subhan Baba Mohammed. "Machine Learning Algorithms for Efficient Storage Management in Resource-Limited Systems: Techniques and Applications." Journal of Artificial Intelligence Research and Applications 3.1 (2023): 406-442.

Althati, Chandrashekar, Bhavani Krothapalli, and Bhargav Kumar Konidena. "Machine Learning Solutions for Data Migration to Cloud: Addressing Complexity, Security, and Performance." Australian Journal of Machine Learning Research & Applications 1.2 (2021): 38-79.

Pakalapati, Naveen, Bhargav Kumar Konidena, and Ikram Ahamed Mohamed. "Unlocking the Power of AI/ML in DevSecOps: Strategies and Best Practices." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.2 (2023): 176-188.

Katari, Monish, Musarath Jahan Karamthulla, and Munivel Devan. "Enhancing Data Security in Autonomous Vehicle Communication Networks." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.3 (2023): 496-521.

Krishnamoorthy, Gowrisankar, and Sai Mani Krishna Sistla. "Exploring Machine Learning Intrusion Detection: Addressing Security and Privacy Challenges in IoT-A Comprehensive Review." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.2 (2023): 114-125.

Reddy, Sai Ganesh, et al. "Harnessing the Power of Generative Artificial Intelligence for Dynamic Content Personalization in Customer Relationship Management Systems: A Data-Driven Framework for Optimizing Customer Engagement and Experience." Journal of AI-Assisted Scientific Discovery 3.2 (2023): 379-395.

Prabhod, Kummaragunta Joel. "Advanced Machine Learning Techniques for Predictive Maintenance in Industrial IoT: Integrating Generative AI and Deep Learning for Real-Time Monitoring." Journal of AI-Assisted Scientific Discovery 1.1 (2021): 1-29.

Tembhekar, Prachi, Lavanya Shanmugam, and Munivel Devan. "Implementing Serverless Architecture: Discuss the practical aspects and challenges." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.3 (2023): 560-580.

Devan, Munivel, Kumaran Thirunavukkarasu, and Lavanya Shanmugam. "Algorithmic Trading Strategies: Real-Time Data Analytics with Machine Learning." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.3 (2023): 522-546.

Tatineni, Sumanth, and Karthik Allam. "Implementing AI-Enhanced Continuous Testing in DevOps Pipelines: Strategies for Automated Test Generation, Execution, and Analysis." Blockchain Technology and Distributed Systems 2.1 (2022): 46-81.

Sadhu, Ashok Kumar Reddy, and Amith Kumar Reddy. "A Comparative Analysis of Lightweight Cryptographic Protocols for Enhanced Communication Security in Resource-Constrained Internet of Things (IoT) Environments." African Journal of Artificial Intelligence and Sustainable Development 2.2 (2022): 121-142.

Makka, Arpan Khoresh Amit. “Integrating SAP Basis and Security: Enhancing Data Privacy and Communications Network Security”. Asian Journal of Multidisciplinary Research & Review, vol. 1, no. 2, Nov. 2020, pp. 131-69, https://ajmrr.org/journal/article/view/187.

Downloads

Published

15-02-2023

How to Cite

[1]
Dr. Felipe Bustamante, “Clustering Algorithms - Hierarchical and Density-based: Analyzing hierarchical and density-based clustering algorithms for grouping similar data points together in unlabeled datasets”, Distrib Learn Broad Appl Sci Res, vol. 9, pp. 48–58, Feb. 2023, Accessed: Nov. 23, 2024. [Online]. Available: https://dlabi.org/index.php/journal/article/view/69

Similar Articles

11-20 of 117

You may also start an advanced similarity search for this article.