Industrial Control Systems Security - Best Practices: Investigating best practices for securing industrial control systems (ICS) and supervisory control and data acquisition (SCADA) systems from cyber threats
Keywords:
Industrial Control Systems, SCADAAbstract
Industrial Control Systems (ICS) and Supervisory Control and Data Acquisition (SCADA) systems are critical components of modern industrial infrastructure, controlling processes in sectors such as energy, water, transportation, and manufacturing. However, these systems are increasingly targeted by cyber threats, posing risks to operational safety, reliability, and confidentiality. This paper investigates best practices for securing ICS and SCADA systems, focusing on preventive, detective, and corrective measures to mitigate cyber risks. We analyze key security challenges, such as legacy system vulnerabilities, insider threats, and the convergence of IT and OT networks, and propose a comprehensive security framework based on industry standards and guidelines. The framework includes strategies for risk assessment, network segmentation, access control, incident response, and security awareness training. Case studies and real-world examples illustrate the application of these best practices, highlighting the importance of a proactive and layered approach to ICS security. By implementing these recommendations, organizations can enhance the resilience of their industrial control systems against cyber threats.
Downloads
References
Prabhod, Kummaragunta Joel. "ANALYZING THE ROLE OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNIQUES IN IMPROVING PRODUCTION SYSTEMS." Science, Technology and Development 10.7 (2021): 698-707.
Sadhu, Amith Kumar Reddy, and Ashok Kumar Reddy Sadhu. "Fortifying the Frontier: A Critical Examination of Best Practices, Emerging Trends, and Access Management Paradigms in Securing the Expanding Internet of Things (IoT) Network." Journal of Science & Technology 1.1 (2020): 171-195.
Machireddy, Jeshwanth Reddy. "Revolutionizing Claims Processing in the Healthcare Industry: The Expanding Role of Automation and AI." Hong Kong Journal of AI and Medicine 2.1 (2022): 10-36.
Tatineni, Sumanth, and Karthik Allam. "Implementing AI-Enhanced Continuous Testing in DevOps Pipelines: Strategies for Automated Test Generation, Execution, and Analysis." Blockchain Technology and Distributed Systems 2.1 (2022): 46-81.
Pulimamidi, Rahul. "Emerging Technological Trends for Enhancing Healthcare Access in Remote Areas." Journal of Science & Technology 2.4 (2021): 53-62.
Perumalsamy, Jegatheeswari, Chandrashekar Althati, and Lavanya Shanmugam. "Advanced AI and Machine Learning Techniques for Predictive Analytics in Annuity Products: Enhancing Risk Assessment and Pricing Accuracy." Journal of Artificial Intelligence Research 2.2 (2022): 51-82.
Devan, Munivel, Lavanya Shanmugam, and Chandrashekar Althati. "Overcoming Data Migration Challenges to Cloud Using AI and Machine Learning: Techniques, Tools, and Best Practices." Australian Journal of Machine Learning Research & Applications 1.2 (2021): 1-39.
Althati, Chandrashekar, Bhavani Krothapalli, and Bhargav Kumar Konidena. "Machine Learning Solutions for Data Migration to Cloud: Addressing Complexity, Security, and Performance." Australian Journal of Machine Learning Research & Applications 1.2 (2021): 38-79.
Sadhu, Ashok Kumar Reddy, and Amith Kumar Reddy. "A Comparative Analysis of Lightweight Cryptographic Protocols for Enhanced Communication Security in Resource-Constrained Internet of Things (IoT) Environments." African Journal of Artificial Intelligence and Sustainable Development 2.2 (2022): 121-142.
Tatineni, Sumanth, and Venkat Raviteja Boppana. "AI-Powered DevOps and MLOps Frameworks: Enhancing Collaboration, Automation, and Scalability in Machine Learning Pipelines." Journal of Artificial Intelligence Research and Applications 1.2 (2021): 58-88.
Pelluru, Karthik. "Enhancing Security and Privacy Measures in Cloud Environments." Journal of Engineering and Technology 4.2 (2022): 1-7.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
License Terms
Ownership and Licensing:
Authors of research papers submitted to Distributed Learning and Broad Applications in Scientific Research retain the copyright of their work while granting the journal certain rights. Authors maintain ownership of the copyright and have granted the journal a right of first publication. Simultaneously, authors agree to license their research papers under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
License Permissions:
Under the CC BY-NC-SA 4.0 License, others are permitted to share and adapt the work, as long as proper attribution is given to the authors and acknowledgement is made of the initial publication in the journal. This license allows for the broad dissemination and utilization of research papers.
Additional Distribution Arrangements:
Authors are free to enter into separate contractual arrangements for the non-exclusive distribution of the journal's published version of the work. This may include posting the work to institutional repositories, publishing it in journals or books, or other forms of dissemination. In such cases, authors are requested to acknowledge the initial publication of the work in this journal.
Online Posting:
Authors are encouraged to share their work online, including in institutional repositories, disciplinary repositories, or on their personal websites. This permission applies both prior to and during the submission process to the journal. Online sharing enhances the visibility and accessibility of the research papers.
Responsibility and Liability:
Authors are responsible for ensuring that their research papers do not infringe upon the copyright, privacy, or other rights of any third party. Scientific Research Canada disclaims any liability or responsibility for any copyright infringement or violation of third-party rights in the research papers.
If you have any questions or concerns regarding these license terms, please contact us at editor@dlabi.org.