AI-Based Predictive Analytics for Autonomous Vehicle Performance Monitoring

Authors

  • Dr. Barbara Secchi Professor of Information Engineering, University of Pisa, Italy Author

Abstract

We are currently entering a new era where the definitions of travel and mobility are being redefined. The concept of autonomous vehicles (AVs) was, until recently, regarded as a distant vision. However, technology has been evolving rapidly, and real-life testing is already taking place on our streets and cities today. Nevertheless, much effort is still needed in both research and development to make AV a safe reality on a larger scale. This chapter describes an AI-based application intended for the predictive maintenance of AVs, which monitors vehicle behavior and predicted failures without the need to explicitly build predictive models [1].

Downloads

Download data is not yet available.

References

Pulimamidi, Rahul. "Leveraging IoT Devices for Improved Healthcare Accessibility in Remote Areas: An Exploration of Emerging Trends." Internet of Things and Edge Computing Journal 2.1 (2022): 20-30.

Tatineni, Sumanth, and Venkat Raviteja Boppana. "AI-Powered DevOps and MLOps Frameworks: Enhancing Collaboration, Automation, and Scalability in Machine Learning Pipelines." Journal of Artificial Intelligence Research and Applications 1.2 (2021): 58-88.

Ponnusamy, Sivakumar, and Dinesh Eswararaj. "Navigating the Modernization of Legacy Applications and Data: Effective Strategies and Best Practices." Asian Journal of Research in Computer Science 16.4 (2023): 239-256.

Shahane, Vishal. "Investigating the Efficacy of Machine Learning Models for Automated Failure Detection and Root Cause Analysis in Cloud Service Infrastructure." African Journal of Artificial Intelligence and Sustainable Development2.2 (2022): 26-51.

Muthusubramanian, Muthukrishnan, and Jawaharbabu Jeyaraman. "Data Engineering Innovations: Exploring the Intersection with Cloud Computing, Machine Learning, and AI." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 1.1 (2023): 76-84.

Tillu, Ravish, Bhargav Kumar Konidena, and Vathsala Periyasamy. "Navigating Regulatory Complexity: Leveraging AI/ML for Accurate Reporting." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.2 (2023): 149-166.

Sharma, Kapil Kumar, Manish Tomar, and Anish Tadimarri. "AI-driven marketing: Transforming sales processes for success in the digital age." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.2 (2023): 250-260.

Abouelyazid, Mahmoud. "Natural Language Processing for Automated Customer Support in E-Commerce: Advanced Techniques for Intent Recognition and Response Generation." Journal of AI-Assisted Scientific Discovery 2.1 (2022): 195-232.

Prabhod, Kummaragunta Joel. "Utilizing Foundation Models and Reinforcement Learning for Intelligent Robotics: Enhancing Autonomous Task Performance in Dynamic Environments." Journal of Artificial Intelligence Research 2.2 (2022): 1-20.

Tatineni, Sumanth, and Anirudh Mustyala. "AI-Powered Automation in DevOps for Intelligent Release Management: Techniques for Reducing Deployment Failures and Improving Software Quality." Advances in Deep Learning Techniques 1.1 (2021): 74-110.

Downloads

Published

14-06-2023

How to Cite

[1]
Dr. Barbara Secchi, “AI-Based Predictive Analytics for Autonomous Vehicle Performance Monitoring”, Distrib Learn Broad Appl Sci Res, vol. 9, pp. 52–80, Jun. 2023, Accessed: Dec. 22, 2024. [Online]. Available: https://dlabi.org/index.php/journal/article/view/44