Blockchain-Integrated AI Systems for Decentralized Cybersecurity

A Resilient Approach to Threat Detection

Authors

  • Dr. Sarah Thompson Assistant Professor, Department of Cybersecurity, University of Toronto, Toronto, Canada Author

Keywords:

Blockchain, Artificial Intelligence, Cybersecurity, Decentralization, Threat Detection, Distributed Networks

Abstract

The increasing frequency and sophistication of cyber threats necessitate innovative approaches to cybersecurity. This paper explores the integration of blockchain technology with artificial intelligence (AI) to develop decentralized cybersecurity systems. Such systems enhance resilience and trust in threat detection mechanisms across distributed networks. By leveraging blockchain's immutable ledger and AI's analytical capabilities, organizations can improve their ability to detect, respond to, and mitigate cyber threats. This research discusses the theoretical foundations of blockchain-integrated AI systems, examines their potential applications in cybersecurity, and highlights the benefits and challenges of implementing these technologies. The findings suggest that combining blockchain and AI can lead to more secure, efficient, and trustworthy cybersecurity solutions, ultimately fostering a proactive security posture in an increasingly digital world.

Downloads

Download data is not yet available.

References

Vangoor, Vinay Kumar Reddy, et al. "Zero Trust Architecture: Implementing Microsegmentation in Enterprise Networks." Journal of Artificial Intelligence Research and Applications 4.1 (2024): 512-538.

Gayam, Swaroop Reddy. "Artificial Intelligence in E-Commerce: Advanced Techniques for Personalized Recommendations, Customer Segmentation, and Dynamic Pricing." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 105-150.

Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Predictive Maintenance of Banking IT Infrastructure: Advanced Techniques, Applications, and Real-World Case Studies." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 86-122.

Putha, Sudharshan. "AI-Driven Predictive Analytics for Maintenance and Reliability Engineering in Manufacturing." Journal of AI in Healthcare and Medicine 2.1 (2022): 383-417.

Sahu, Mohit Kumar. "Machine Learning for Personalized Marketing and Customer Engagement in Retail: Techniques, Models, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 219-254.

Kasaraneni, Bhavani Prasad. "AI-Driven Policy Administration in Life Insurance: Enhancing Efficiency, Accuracy, and Customer Experience." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 407-458.

Kondapaka, Krishna Kanth. "AI-Driven Demand Sensing and Response Strategies in Retail Supply Chains: Advanced Models, Techniques, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 459-487.

Kasaraneni, Ramana Kumar. "AI-Enhanced Process Optimization in Manufacturing: Leveraging Data Analytics for Continuous Improvement." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 488-530.

Pattyam, Sandeep Pushyamitra. "AI-Enhanced Natural Language Processing: Techniques for Automated Text Analysis, Sentiment Detection, and Conversational Agents." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 371-406.

Kuna, Siva Sarana. "The Role of Natural Language Processing in Enhancing Insurance Document Processing." Journal of Bioinformatics and Artificial Intelligence 3.1 (2023): 289-335.

George, Jabin Geevarghese, et al. "AI-Driven Sentiment Analysis for Enhanced Predictive Maintenance and Customer Insights in Enterprise Systems." Nanotechnology Perceptions (2024): 1018-1034.

P. Katari, V. Rama Raju Alluri, A. K. P. Venkata, L. Gudala, and S. Ganesh Reddy, “Quantum-Resistant Cryptography: Practical Implementations for Post-Quantum Security”, Asian J. Multi. Res. Rev., vol. 1, no. 2, pp. 283–307, Dec. 2020

Karunakaran, Arun Rasika. "Maximizing Efficiency: Leveraging AI for Macro Space Optimization in Various Grocery Retail Formats." Journal of AI-Assisted Scientific Discovery 2.2 (2022): 151-188.

Sengottaiyan, Krishnamoorthy, and Manojdeep Singh Jasrotia. "Relocation of Manufacturing Lines-A Structured Approach for Success." International Journal of Science and Research (IJSR) 13.6 (2024): 1176-1181.

Paul, Debasish, Gunaseelan Namperumal, and Yeswanth Surampudi. "Optimizing LLM Training for Financial Services: Best Practices for Model Accuracy, Risk Management, and Compliance in AI-Powered Financial Applications." Journal of Artificial Intelligence Research and Applications 3.2 (2023): 550-588.

Namperumal, Gunaseelan, Akila Selvaraj, and Yeswanth Surampudi. "Synthetic Data Generation for Credit Scoring Models: Leveraging AI and Machine Learning to Improve Predictive Accuracy and Reduce Bias in Financial Services." Journal of Artificial Intelligence Research 2.1 (2022): 168-204.

Soundarapandiyan, Rajalakshmi, Praveen Sivathapandi, and Yeswanth Surampudi. "Enhancing Algorithmic Trading Strategies with Synthetic Market Data: AI/ML Approaches for Simulating High-Frequency Trading Environments." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 333-373.

Pradeep Manivannan, Amsa Selvaraj, and Jim Todd Sunder Singh. “Strategic Development of Innovative MarTech Roadmaps for Enhanced System Capabilities and Dependency Reduction”. Journal of Science & Technology, vol. 3, no. 3, May 2022, pp. 243-85

Yellepeddi, Sai Manoj, et al. "Federated Learning for Collaborative Threat Intelligence Sharing: A Practical Approach." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 146-167.

Rout, Litu, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng Chu. "Beyond first-order tweedie: Solving inverse problems using latent diffusion." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9472-9481. 2024.

Downloads

Published

12-10-2024

How to Cite

[1]
Dr. Sarah Thompson, “Blockchain-Integrated AI Systems for Decentralized Cybersecurity: A Resilient Approach to Threat Detection”, Distrib Learn Broad Appl Sci Res, vol. 10, pp. 324–331, Oct. 2024, Accessed: Nov. 06, 2024. [Online]. Available: https://dlabi.org/index.php/journal/article/view/158

Similar Articles

1-10 of 115

You may also start an advanced similarity search for this article.