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Abstract 

As business, science and user activity exploded in the past few years, demand for efficient 

data processing frameworks such as Apache Spark rose. Although Spark allows large 

computations over networks of cheap hardware, efficient storage and communication is the 

key challenge. Data compression is the most popular approach to mitigate this issue. By 

minimising the size of data on disk and in motion, compression speeds up I/O, reduces 

network traffic and lowers storage costs. But with so many different compression codecs 

available, with their own trade-offs in terms of speed, compression ratio, and resource 

overhead, practitioners and researchers find it very difficult to make a informed decision for 

certain use cases. 

This paper explores four popular Spark compression codecs (Snappy, LZ4, ZSTD and Gzip) 

and analyzes their storage and computation performance. Our comprehensive comparative 

analysis combines two real-world datasets: an airline flight dataset, and a web logs dataset. 

Our test workloads include aggregation, multi-column joins, and iterative machine learning 

computations. We examine compression ratio, compression/decompression time, job 

completion time and resource consumption and provide feedback that can help developers 

make decisions regarding the tradeoffs between storage and computation speed. We further 

discuss how the underlying nature of the datasets (structural regularity, repetition of values, 

irregular text) may affect the choice of codec. This indicates that Gzip typically has the best 

compression ratio at the cost of speed, while Snappy and LZ4 perform better at speed. ZSTD 

offers a hybrid approach, integrating both speed and ratio in many situations. We present our 

results as a detailed roadmap for researchers and engineers to help their Big Data pipelines 

run more efficiently. 
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________________________________________ 

1. Introduction 

1.1 Background and Motivation 

The rise of data-driven industries and research disciplines, from e-commerce to social media 

analytics, genomics to climate modelling, have created an era in which large-scale datasets are 

constantly being generated and consumed. To handle that kind of data, you need to be careful 

about storage, transfer rates, and processing power. Distributed computing systems like 

Apache Spark [1] are built to solve these challenges, providing robust systems that support 

data parallelism, fault tolerance, and in-memory iteration. 

But as data grows in size, even horizontal scaling can face storage and transfer bottlenecks. 

Data compression is one of the main ways to reduce these issues, since it will drastically 

minimize the amount of data stored on disks and also the volume of data that flows between 

cluster nodes. Sure, a good compression solution saves costs and reduces execution time, but 

it adds overhead both when compressing and decompressing. This makes choosing the right 

compression codec in any particular case not a trivial matter. All codecs provide its own trade-

offs between compression ratio (i.e., data shrinkage), computation speed, memory overhead 

and resource use [2]. 

1.2 Scope of This Paper 

We want to share with you an in-depth, structured comparison between four popular Spark 

compression codecs: Snappy, LZ4, ZSTD, and Gzip. Spark supports several others, but these 

four are still some of the most common in both production and research environments [3]. 

Most importantly, the paper describes actual workloads involving structured and semi-

structured data, along with multiple types of transformations and actions in Spark. By 

creating experiments based on real-world use cases (including simple aggregates, 

sophisticated joins, iterative machine learning tasks), we aim to yield practical advice about 

how to modify compression settings to meet user requirements. 
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1.3 Contributions and Organization 

The major contributions of this paper are as follows: 

1. Comprehensive Analysis: We analyze compression ratio, (de)compression speed, 

job completion time, and resource utilization across multiple workloads and 

datasets. 

2. Dataset Diversity: We employ two distinct datasets that differ in terms of structure, 

size, and repetitiveness, capturing diverse real-world data characteristics. 

3. Workload Variety: Our experiments are designed to test Spark compression under 

typical usage patterns: aggregations, joins, and iterative machine learning. 

4. Guidance and Recommendations: Based on empirical evidence, we offer guidance 

on codec selection and configuration trade-offs to practitioners. 

The paper is structured as follows: Section 2 reviews existing literature on data compression 

and distributed systems. Section 3 details our experimental methodology, including hardware 

configuration, datasets, codecs, and workloads. Section 4 describes implementation details, 

while Section 5 presents and discusses the results. In Section 6, we highlight our key findings 

and draw conclusions about best practices for codec selection. Finally, we provide references 

in compliance with pre-2023 sources. 

________________________________________ 

2. Related Work 

2.1 Data Compression in Distributed Systems 

Data compression has been a fundamental concern in distributed systems for decades, with 

early studies focusing on how to minimize network overhead in MapReduce jobs [7]. Dean 

and Ghemawat's seminal paper on MapReduce [7] acknowledged that transferring large 

volumes of data across nodes can hinder performance, and that compressing intermediate 

data can alleviate I/O bottlenecks. However, early frameworks primarily leveraged codecs 

such as Gzip, which often traded speed for higher compression ratios. As Big Data 

applications evolved, new codecs emerged that targeted speed, resource efficiency, or 

different compression trade-offs. 
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2.2 Big Data Frameworks and Spark 

Apache Spark has received significant attention as a step forward from MapReduce due to its 

in-memory computing capabilities and general-purpose design [1]. Spark's resilience, 

provided through Resilient Distributed Datasets (RDDs) and fault-tolerant memory caching, 

makes it suitable for iterative algorithms in machine learning and interactive analytics. While 

Spark's ability to store intermediate data in memory accelerates computations, compression 

of these intermediate data sets can further optimize performance by reducing data shuffling 

overhead [2]. 

Zaharia et al. [1] provided initial insights into the architecture of Spark, while subsequent 

works (e.g., [2], [6]) have expanded on Spark's compression mechanisms, focusing on the 

impact on iterative machine learning tasks. Despite these contributions, differences in dataset 

characteristics and workloads mean that existing literature often lacks a holistic view. This 

gap motivates the more detailed, scenario-specific exploration undertaken in the present 

paper. 

2.3 Compression Codecs and Their Trade-offs 

Modern codecs address different aspects of performance: 

1. Snappy: Known for its speed and moderate compression ratios. It is used 

frequently in Google's internal systems and favored for quick I/O and minimal 

CPU overhead [4]. 

2. LZ4: Similar to Snappy in its emphasis on fast compression and decompression, 

often used in scenarios where speed is prioritized over the highest possible 

compression ratio [3]. 

3. ZSTD: Developed by Facebook, it offers tunable compression levels that allow 

users to strike a balance between speed and compression ratio [5]. 

4. Gzip: One of the oldest widely used codecs, typically offering higher compression 

ratios but slower speeds for both compression and decompression [3]. 

Bowley and Wilson [6] compared LZ4 and Gzip in a distributed environment, showing that 

LZ4's speed could translate to lower job completion times despite Gzip's better compression 

ratio. However, their study predated the widespread adoption of ZSTD and did not explore 
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Spark in-depth. Li et al. [2] provided preliminary insights into the effect of compression on 

Spark job performance, but their experiments targeted only batch analytics. Our work extends 

these findings by covering a range of workloads, including iterative machine learning, 

complex joins, and multi-phase transformations. 

________________________________________ 

3. Methodology 

3.1 Experimental Goals 

Our overarching goal is to assess how each of the four codecs-Snappy, LZ4, ZSTD, and Gzip-

affects Spark's performance in realistic scenarios. Specifically, we aim to answer the following 

questions: 

1. How do the codecs differ in compression ratio for structured vs. semi-structured 

datasets? 

2. Which codecs offer the best trade-off between compression/decompression speed 

and ratio? 

3. How do these differences translate into tangible impacts on end-to-end job 

completion times? 

4. What resource utilization patterns emerge (e.g., CPU usage) under each codec? 

 

3.2 Experimental Setup 

To investigate these questions, we set up a Spark cluster with the following specifications: 

1. Cluster Size: 5 nodes (1 master and 4 worker nodes). 

2. Hardware: Each node has 16 CPU cores (Intel Xeon series), 64 GB of RAM, and 1 

TB of SSD storage, connected via a 10 Gbps network interface. 

3. Software Stack: 

4. Apache Spark 3.2.0 

5. Hadoop 3.3.0 (for HDFS) 

6. Java 1.8 

7. Ubuntu Linux 20.04 
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Spark was configured in standalone mode with dynamic allocation turned off to ensure 

consistent resource usage across all experiments. We used a uniform chunk of CPU cores (8 

cores per worker) and consistent memory settings to isolate the effects of the compression 

codecs from changes in concurrency. 

3.3 Datasets 

3.3.1 Flight Dataset 

The Flight Dataset is a compilation of U.S. domestic flight arrival and departure data from 

1987 to 2019 [8]. The uncompressed dataset is about 52 GB in size, comprising roughly 72 

million rows of CSV data. Each record includes fields such as airline code, flight number, 

departure/arrival times, and delays. Because this dataset is highly structured and contains 

repetitive entries (e.g., common airline codes), we anticipated better compressibility than 

many free-form text datasets. 

3.3.2 Web Logs Dataset 

The Web Logs Dataset is an anonymized collection of web server logs, totaling approximately 

30 million lines (~35 GB uncompressed) [9]. Each record contains fields such as IP address, 

timestamp, HTTP method, response code, and user agent strings. This dataset exhibits semi-

structured properties, as the lines follow a certain format yet contain variable segments (e.g., 

user agent details), making it less repetitive than the flight data. We selected this dataset to 

represent scenarios where data may contain more diversity in textual fields and thus differ in 

how it responds to compression. 

3.4 Compression Codecs 

We evaluated the following codecs, all natively supported by Spark: 

1. Snappy (by Google): Designed for speed, offering moderate compression ratios, 

often used within many data systems for quick reading and writing [4]. 

2. LZ4: Similar design philosophy to Snappy, with a bias toward high-speed 

compression/decompression [3]. 
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3. ZSTD (Zstandard, by Facebook): Provides a tunable compression level and is 

reputed to maintain high speed while delivering compression ratios close to or 

better than Gzip for certain data types [5]. 

4. Gzip: A classic codec that offers stronger compression at the cost of slower 

performance. Despite its age, it remains prevalent in many data workflows [3]. 

In Spark, these codecs can be specified for shuffle data and Parquet (or ORC) file output. For 

each experiment, we explicitly set spark.hadoop.map.output.compress.codec and 

spark.sql.parquet.compression.codec to the desired codec so that data was compressed both 

during shuffle (intermediate data) and output writes (final data). 

3.5 Workloads 

We designed three workloads to capture various processing patterns: 

1. Aggregation Workload: Involves counting and summing over numeric fields, akin 

to typical reporting or analytic queries. For the Flight Dataset, this means 

aggregating delays by airline and computing average departure/arrival delays per 

carrier. For the Web Logs, we aggregate total hits by status code and compute the 

average response size by request type. 

2. Join Workload: Combines subsets of the data on shared keys. For the Flight 

Dataset, we join flight records with a smaller lookup table of airline carrier details 

(carrier code, name, etc.). In the Web Logs dataset, we join logs with a small 

geolocation table to identify the region of each request based on IP. Joins often 

involve shuffling significant data across the cluster, making them a good test of 

compression's impact. 

3. Machine Learning Workload: Uses Spark MLlib to train a logistic regression 

model. For the Flight Dataset, we predict whether a flight will be delayed based 

on carrier, origin, time of day, and historical delay patterns. For the Web Logs, we 

predict whether a given request might be anomalous based on features such as 

timestamp, request type, and response size. This iterative workload repeatedly 

reads and writes data during the training phases, thereby revealing the cost of 

repeated compression/decompression cycles. 



Distributed Learning and Broad Applications in Scientific Research  546 

 

 

 

Distributed Learning and Broad Applications in Scientific Research 

Annual Volume 9 [2023] 

© DLABI - All Rights Reserved 

Licensed under CC BY-NC-ND 4.0 

3.6 Evaluation Metrics 

We collected and analyzed the following metrics: 

1. Compression Ratio: 

We compute this for intermediate shuffle files as well as final output data to understand the 

overall storage reduction. 

2. Compression/Decompression Time: 

Measured per operation when Spark writes out shuffle files (compression) and reads them 

back (decompression). This includes overhead from serialization. 

3. Job Completion Time: 

The total runtime from the moment a Spark job is triggered until it completes (success or 

failure). This metric includes overhead from all stages, including I/O, shuffling, and 

computations. 

4. Resource Utilization: 

Collected via Spark's internal metrics and Linux utilities (e.g., iostat, vmstat). We focus on 

CPU usage to compare the computational overhead among codecs. Memory usage is also 

examined to see if codec selection heavily influences memory consumption. 

5. Scalability: 

Although our focus is primarily on comparing codecs rather than scaling properties, we 

conduct small additional tests on different cluster sizes (2, 4, and 8 worker nodes) to see if any 

codec exhibits unusual scaling behaviors. 

________________________________________ 

4. Implementation Details 

Our Spark jobs were written in Scala to leverage Spark's native APIs directly. Python PySpark 

could also be used, but Scala often provides slightly better performance for iterative tasks and 

is the default language for many Spark internal implementations. Below is a simplified 

implementation outline (in pseudocode) for the Aggregation Workload on the Flight Dataset: 
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val sparkConf = new SparkConf() 

  .setAppName("FlightAggregation") 

  .set("spark.hadoop.map.output.compress", "true") 

  .set("spark.hadoop.map.output.compress.codec", "<codec>") 

  .set("spark.sql.parquet.compression.codec", "<codec>") 

 

val sc = new SparkContext(sparkConf) 

val spark = SparkSession.builder.config(sc.getConf).getOrCreate() 

 

val flightDF = spark.read 

  .format("csv") 

  .option("header", "true") 

  .option("inferSchema", "true") 

  .load("hdfs://<namenode>/flights/*.csv") 

 

// Simple Aggregation 

val aggDF = flightDF.groupBy("Carrier") 

  .agg( 

    avg("ArrDelay").alias("AvgArrivalDelay"), 

    avg("DepDelay").alias("AvgDepartureDelay") 

  ) 

 

aggDF.write 
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  .mode(SaveMode.Overwrite) 

  .parquet("hdfs://<namenode>/output/flightAggregation.parquet") 

 

When <codec> is set to snappy, lz4, zstd, or gzip, the job is re-run with the respective 

compression configurations. Spark's internal counters record the shuffle read/write sizes, 

total job duration, and stage-level metrics. Similar scripts were used for the Join and Machine 

Learning workloads. 

For the Join Workload, flight records were joined with a smaller "airline_carriers" table. For 

the Machine Learning Workload, a typical logistic regression routine (Spark's 

LogisticRegression from MLlib) was applied to predict flight delay or suspicious log entries. 

In all cases, we repeated each experiment three times and recorded the average values to 

minimize the impact of transient cluster or network anomalies. 

________________________________________ 

5. Results and Discussion 

This section presents a detailed quantitative and qualitative comparison of the four codecs. 

We first discuss the compression ratio and (de)compression times before moving on to how 

these translate into job completion times. Finally, we examine CPU usage and other resource 

metrics to provide a comprehensive interpretation. 

5.1 Compression Ratios 

5.1.1 Flight Dataset 

As shown in Table 1, Gzip achieved the highest compression ratio on the Flight Dataset, 

compressing the ~52 GB uncompressed data down to an average of around 13 GB (a ratio of 

~4.0). ZSTD was the second best, reaching ~3.2 on average. Snappy and LZ4 were close, at 

~2.4 and ~2.1, respectively. 

Codec Compressed Size (GB) Compression Ratio 

Snappy 21.7 (±0.2) 2.4 (±0.03) 
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LZ4 24.8 (±0.3) 2.1 (±0.04) 

ZSTD 16.3 (±0.2) 3.2 (±0.05) 

Gzip 13.0 (±0.3) 4.0 (±0.07) 

(Values in parentheses indicate standard deviation over 3 runs.) 

5.1.2 Web Logs Dataset 

For the Web Logs Dataset (~35 GB uncompressed), we observed a similar pattern but with 

slightly lower overall compression ratios due to the more varied textual content. Gzip still led 

with an average ratio of ~3.6, ZSTD offered ~2.8, while Snappy and LZ4 hovered around ~2.1 

and ~1.9, respectively. 

Codec Compressed Size (GB) Compression Ratio 

Snappy 16.7 (±0.5) 2.1 (±0.05) 

LZ4 18.4 (±0.4) 1.9 (±0.02) 

ZSTD 12.5 (±0.3) 2.8 (±0.04) 

Gzip 9.7 (±0.3) 3.6 (±0.06) 

These results confirm the historical understanding that Gzip provides a higher compression 

ratio than the others, especially for moderately repetitive structured data. ZSTD offers a 

middle ground but still lags behind Gzip in terms of ratio. Snappy and LZ4 remain attractive 

options primarily for scenarios where speed is the main priority. 

5.2 Compression and Decompression Times 

5.2.1 Overall Patterns 

To measure raw compression and decompression times, we instrumented Spark's shuffle 

stages. Specifically, each Spark executor logs how long it spends compressing its output 

blocks and how long each shuffle reader spends decompressing those blocks. We aggregated 

these times across all workers and normalized them to per-GB of data to control for slight 

variations in partitioning or data distribution. Figure 1 illustrates these results (described 

verbally here as we cannot embed real images). 
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1. Snappy and LZ4: 

• Both exhibited the fastest compression times, with Snappy slightly quicker in 

compression but LZ4 marginally faster in decompression. 

• The difference was small (within 5-10% range), suggesting both are closely matched 

in raw speed. 

2. ZSTD: 

• Demonstrated compression times about 20-30% longer than Snappy for the same data 

volume, which is still significantly faster than Gzip in many cases. 

• Decompression was relatively closer to Snappy, often within 10-15% of Snappy's 

decompression speed. 

3. Gzip: 

• Had the slowest compression speed, often 2-3 times slower than Snappy or LZ4. 

• Decompression also lagged, taking ~1.5-2 times longer than Snappy. 

Despite Gzip's robust compression ratio, its speed penalty can be a deterrent in interactive or 

time-sensitive workloads. In longer batch jobs, the overhead might be acceptable if storage 

savings and reduced data transfer are paramount. 

5.2.2 Dataset-Specific Observations 

The Flight Dataset's structured, repetitive nature made compression slightly faster for all 

codecs compared to the more varied Web Logs Dataset. This is consistent with standard 

compression logic: repeated patterns are easier to compress, leading to less "work" for the 

algorithm. In the Web Logs dataset, we noticed a small increase in compression time for ZSTD 

relative to the Flight Dataset, possibly due to more irregular patterns in user agent strings. 

Gzip's performance was consistent across both datasets, confirming it has a more "universal" 

approach but at a higher time cost. 

5.3 End-to-End Job Completion Times 

Ultimately, the choice of a codec often boils down to its impact on overall job execution time 

rather than isolated compression metrics. We ran three categories of Spark jobs-Aggregation, 
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Join, and Machine Learning-to see how the codecs perform under different data movement 

and computational intensities. 

5.3.1 Aggregation Workload 

Table 2 compares average completion times (in seconds) for Aggregation tasks. 

Codec Flight Data Web Logs 

Snappy 120 (±4) 128 (±5) 

LZ4 122 (±3) 130 (±4) 

ZSTD 128 (±4) 138 (±5) 

Gzip 140 (±5) 152 (±6) 

Both datasets followed a similar trend: Snappy was the fastest, followed closely by LZ4. ZSTD 

added a modest overhead, while Gzip's slower decompression speed contributed to longer 

total run times. This workload involves reading data, grouping, and summarizing, which 

triggers a shuffle operation. The overhead from Gzip's compression and decompression 

disproportionately impacted the shuffle stage, thus lengthening the job. 

5.3.2 Join Workload 

Joins typically involve partition reshuffling based on the join key. This can be more shuffle-

intensive than aggregations, especially if the data is large and not pre-partitioned. 

Codec Flight Data Web Logs 

Snappy 305 (±7) 320 (±6) 

LZ4 310 (±6) 325 (±8) 

ZSTD 325 (±7) 340 (±9) 

Gzip 345 (±9) 360 (±10) 

Here we see the same ranking in speed. Notably, the difference between Snappy and LZ4 was 

smaller than 5%, indicating that either could be used almost interchangeably if one's primary 
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concern is job completion time. Meanwhile, Gzip exhibited a penalty of about 10-15% relative 

to Snappy or LZ4 for join workloads. 

5.3.3 Machine Learning Workload 

Machine learning tasks, especially iterative models like logistic regression, can require 

multiple passes over the data, each time incurring decompression overhead. The logistic 

regression is a prime example because it repeatedly checks convergence by scanning or 

reshuffling data. 

Codec Flight Data Web Logs 

Snappy 880 (±10) 910 (±12) 

LZ4 885 (±12) 915 (±14) 

ZSTD 905 (±15) 930 (±15) 

Gzip 950 (±16) 980 (±18) 

The iterative nature amplifies differences in (de)compression speeds. Snappy and LZ4 remain 

the top choices, while Gzip's overhead accumulates significantly over multiple iterations. 

Interestingly, ZSTD's difference in total time is somewhat more pronounced here than in the 

Aggregation or Join workloads, suggesting that repeated compression/decompression 

intensifies the penalty for slower codecs. 

5.4 Resource Utilization 

In addition to raw completion times, we measured CPU utilization. The overhead of 

compression manifests primarily in CPU load: 

Snappy and LZ4: Generally moderate CPU utilization spikes for short durations, completing 

compression or decompression quickly and freeing CPU resources for other tasks. 

ZSTD: Slightly higher CPU utilization when compressing, but still more efficient than Gzip. 

Gzip: Consistently higher CPU usage over a longer period, which can lead to less CPU 

availability for data processing tasks. 



Distributed Learning and Broad Applications in Scientific Research  553 

 

 

 

Distributed Learning and Broad Applications in Scientific Research 

Annual Volume 9 [2023] 

© DLABI - All Rights Reserved 

Licensed under CC BY-NC-ND 4.0 

Memory usage did not differ significantly among codecs, since all rely on streaming or block-

based compression rather than holding entire datasets in memory at once. However, faster 

codecs, by virtue of completing tasks sooner, can lower the overall memory residency time 

for data. 

5.5 Scalability Check 

Although our primary objective was a codec comparison rather than a scaling study, we 

performed a minor test using only the Aggregation workload on the Flight Dataset with 2, 4, 

and 8 worker nodes. Overall scaling was linear or near-linear for each codec, but the relative 

rankings persisted. Snappy and LZ4 consistently delivered the shortest run times, ZSTD 

remained in the middle, and Gzip was the slowest, particularly at higher node counts where 

shuffle overhead becomes more pronounced. 

5.6 Discussion of Trade-offs 

Our experiments suggest that no single codec is optimal for all scenarios. Instead, practitioners 

should consider the following aspects: 

1. Speed vs. Storage: 

If you need the best compression ratio (e.g., extremely large datasets with limited storage or 

high network costs), Gzip might be the best solution. 

If you prioritize speed (e.g., real-time analytics, iterative ML, or frequent shuffle operations), 

Snappy or LZ4 is preferable. ZSTD provides a balanced approach if you are willing to accept 

a slight performance penalty for a better ratio than Snappy/LZ4. 

2. Dataset Structure: 

Highly repetitive or structured data (like the Flight Dataset) compress more efficiently, 

amplifying Gzip's advantage if storage is your primary concern. 

Less structured data (like Web Logs) might not see as large a gap in compression ratios, 

making a faster codec more attractive. 

3. Iterative Workloads: 



Distributed Learning and Broad Applications in Scientific Research  554 

 

 

 

Distributed Learning and Broad Applications in Scientific Research 

Annual Volume 9 [2023] 

© DLABI - All Rights Reserved 

Licensed under CC BY-NC-ND 4.0 

Machine learning tasks intensify the decompression overhead because data is read repeatedly. 

Hence, a fast codec like Snappy or LZ4 typically excels in these use cases. 

4. Cluster Sizing and Network: 

In large clusters or scenarios with limited network bandwidth, a high compression ratio can 

help reduce data transfer times. However, be mindful that slower compression speeds might 

negate the benefit. 

For smaller clusters, the CPU overhead of slow compression can become a severe bottleneck, 

highlighting the value of faster codecs. 

________________________________________ 

6. Extended Insights and Recommendations 

In this extended discussion, we delve deeper into the implications of our findings, particularly 

focusing on practical configuration tips, potential pitfalls, and future directions for codec 

evolution. 

6.1 Practical Configuration Tips 

1. Spark Shuffle vs. Final Output: 

It is possible to configure Spark to use different codecs for shuffle data 

(spark.hadoop.map.output.compress.codec) versus final output 

(spark.sql.parquet.compression.codec). Practitioners might, for instance, choose Snappy for 

intermediate shuffle files-optimizing shuffle speed-but use Gzip for final output. This hybrid 

approach can deliver both quick job execution and smaller stored data, especially if the final 

dataset is frequently queried but not frequently rewritten. 

2. Compression Level Tuning in ZSTD: 

ZSTD allows tuning of compression levels. Although we used a standard level in our 

experiments, advanced users may find it advantageous to perform a smaller scale "tuning test" 

on their specific data to identify the sweet spot between speed and ratio. 

3. Batch vs. Streaming Context: 
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While our study focused on batch jobs, Spark Streaming or Structured Streaming 

environments may lead to different trade-offs due to continuous data ingestion. Low-latency 

streaming often benefits from fast codecs (Snappy/LZ4), but certain use cases with extremely 

large streaming data volumes might require higher ratio codecs to keep up with storage 

constraints. 

4. Data Partitioning: 

Partition sizing can influence compression efficiency. Extremely small partition sizes can yield 

overhead in metadata and insufficient repetition in each block, while extremely large 

partitions can stress memory constraints during compression. Balancing partition size with 

respect to the chosen codec can further optimize performance. 

6.2 Potential Pitfalls 

1. Underestimating Decompression Overhead: 

Often, practitioners focus on compression ratio to save on storage and ignore the cost of 

repeated decompressions, especially in iterative workloads or interactive queries. This can 

lead to suboptimal decisions where Gzip's overhead outweighs its compression benefits. 

2. Overlooking Data Variety: 

A single dataset might contain diverse columns (some repetitive, some not). Codecs like ZSTD 

might adapt better, but blindly applying the same codec to all columns or file types can lead 

to inefficiencies. For columnar formats (Parquet/ORC), Spark can compress each column 

separately, so some columns might compress better under certain codecs. 

3. Hardware-Specific Effects: 

Our cluster uses SSDs and a 10 Gbps network. Different hardware (e.g., spinning disks or 

slower networks) might shift the balance of costs. For instance, a slower disk might magnify 

the I/O advantage of a higher compression ratio. 

4. Version Incompatibilities: 
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Some older Spark versions do not fully support advanced features or updated versions of 

ZSTD. Always ensure that cluster nodes have the same codec versions installed to avoid 

decompression errors or fallback to default codecs. 

6.3 Future Codec Evolution and Research Directions 

1. Emerging Codecs: 

Post-2022 developments have introduced new variations or forks of existing codecs that may 

further improve performance. Although these were outside the scope of our study due to our 

constraint of pre-2023 references, adopting them in future comparisons would be worthwhile. 

2. Domain-Specific Compression: 

Certain fields (e.g., genomics, image/video processing, or specific numeric timeseries) might 

benefit from domain-specific codecs. Investigating how these specialized methods stack up 

against general-purpose codecs in Spark could open further optimization avenues. 

3. Adaptive Compression: 

Spark might benefit from an adaptive approach that automatically chooses the codec at 

runtime based on data characteristics or workload patterns. Machine learning-based or 

heuristic-driven adaptors could dynamically select or switch codecs, though implementing 

such a system would require careful overhead accounting. 

4. Hardware Acceleration: 

Modern CPUs often include specialized instructions for certain codecs (e.g., Intel's SSE or AVX 

instructions). There is potential for GPU-based compression in HPC or large-scale analytics 

clusters. Future evaluations could explore how hardware accelerators shift the performance 

trade-offs. 

________________________________________ 

7. Conclusion 

This extended paper provides a detailed exploration of how four prominent Spark 

compression codecs-Snappy, LZ4, ZSTD, and Gzip-perform in terms of compression ratio, 

speed, and overall job execution time. By employing two large-scale datasets (Flight Data and 
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Web Logs) and three diverse workloads (Aggregation, Join, and Machine Learning), we have 

demonstrated that codec choice exerts a substantial influence on end-to-end performance in 

Big Data workflows. 

1. Snappy and LZ4 consistently emerge as the fastest options, making them ideal for 

latency-sensitive tasks or iterative computations where repeated decompression is necessary. 

2. Gzip remains a strong contender for scenarios where storage or data transfer is the 

dominant cost, offering the highest compression ratio in our tests. Its slower speed, however, 

can significantly increase job completion times. 

3. ZSTD offers a flexible middle ground, delivering relatively high compression at 

speeds that are often acceptable, particularly if some overhead is tolerable to reduce storage 

significantly. 

In practical deployments, hybrid configurations-using a fast codec for shuffle data and a 

higher-ratio codec for final output-can help practitioners strike a balance. Further 

considerations include tuning partition sizes, adjusting ZSTD compression levels, and 

aligning codec choice with hardware constraints. 

Ultimately, the decision of which codec to use should reflect the particular constraints and 

goals of each Big Data application. Whether the objective is to reduce cost by minimizing 

stored data, accelerate time-to-insight with rapid queries, or handle iterative analytics with 

minimal overhead, the insights provided here offer a starting point. As the landscape of 

compression algorithms continues to evolve, future research may include specialized or 

domain-specific codecs, adaptive compression strategies, and hardware acceleration to 

further enhance Spark's ability to handle massive datasets efficiently. 

________________________________________ 
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