
Distributed Learning and Broad Applications in Scientific Research 876

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Integrating Amazon EKS with CI/CD Pipelines for Efficient
Application Delivery
Babulal Shaik, Cloud Solutions Architect at Amazon Web Services, USA

Karthik Allam , Big Data Infrastructure Engineer at JP Morgan & Chase, USA

Abstract:

Integrating Amazon Elastic Kubernetes Service (EKS) with Continuous Integration and
Continuous Deployment (CI/CD) pipelines is a powerful approach for streamlining
application delivery processes. By leveraging EKS, businesses can manage containerized
applications efficiently in a scalable, secure, and highly available environment. Integrating
EKS with CI/CD tools enables automation of the entire software development lifecycle, from
code commit to production deployment. This process minimizes human error, speeds
delivery times, and ensures consistency across development, testing, and production
environments. Developers can build, test, and deploy applications faster using CI/CD
pipelines to automatically trigger builds and deploy containers to EKS clusters, providing a
seamless flow from code to production. Additionally, this integration ensures that updates
are consistently tested, validated, and deployed with minimal downtime, improving overall
reliability and user experience. The flexibility of EKS allows teams to quickly scale resources
based on demand, making it an ideal solution for applications of all sizes. By automating
repetitive tasks and reducing manual intervention, companies can focus more on innovation
and less on infrastructure management. This paper explores the best practices for integrating
EKS with popular CI/CD tools like Jenkins, GitLab, and CircleCI, providing a roadmap for
organizations looking to optimize their DevOps pipelines. Ultimately, this integration
empowers development teams to deliver high-quality software rapidly and efficiently while
maintaining the reliability and scalability needed for modern cloud-native applications.

Keywords: Amazon EKS, CI/CD, Continuous Delivery, Kubernetes, Cloud-native
applications, Automation, DevOps, Jenkins, GitLab, Docker, Helm, AWS Secrets Manager,
CloudWatch, Prometheus, Microservices, Containerization, Scalability, Infrastructure as
Code, Kubernetes Clusters, Continuous Integration, DevOps Pipelines, Application Delivery,
Rollback Strategies, Monitoring, Logging.

1. Introduction

Businesses are increasingly embracing cloud-native technologies to remain agile, competitive,
and responsive to market demands. Cloud-native applications, built using microservices and
containers, have become the standard for building scalable and resilient systems. At the heart
of these applications lies container orchestration, which helps to manage and scale
containerized workloads seamlessly. One of the most powerful tools in this domain is

Distributed Learning and Broad Applications in Scientific Research 877

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Kubernetes, the open-source platform for automating the deployment, scaling, and
management of containerized applications. However, managing Kubernetes clusters can be
complex and time-consuming, especially for large-scale applications. This is where Amazon
EKS (Elastic Kubernetes Service) comes in, providing a fully managed Kubernetes service that
simplifies the management of clusters while offering high availability, security, and
scalability.

1.1 Cloud-Native Applications and Container Orchestration

The rise of cloud-native applications has revolutionized the way businesses approach
software development. These applications are typically built using microservices
architectures, where each service is independently deployable and scalable. Containers, which
encapsulate applications and their dependencies, are the ideal packaging mechanism for such
microservices. They allow for greater portability and consistency across different
environments, whether on a developer’s local machine or in production on the cloud.

This is where managed Kubernetes services like Amazon EKS can be a game-changer. EKS
takes the complexity out of managing Kubernetes by offering a fully managed service that
ensures clusters are highly available, secure, and easy to scale. EKS also integrates seamlessly
with other AWS services, making it an attractive option for organizations looking to build and
scale cloud-native applications without investing heavily in infrastructure management.

Kubernetes has emerged as the de facto standard for container orchestration, offering
powerful features for managing complex containerized applications. Kubernetes automates
many tasks such as container deployment, scaling, load balancing, and resource management.
However, as the complexity of Kubernetes clusters grows, so does the challenge of managing
them, especially for organizations that lack dedicated Kubernetes expertise.

1.2 Overview of Amazon EKS

Amazon Elastic Kubernetes Service (EKS) is a fully managed Kubernetes service that
simplifies the deployment, management, and scaling of Kubernetes clusters in the cloud. EKS
eliminates the need for businesses to manually install and operate their own Kubernetes
control plane, allowing teams to focus on deploying and managing their applications rather
than maintaining infrastructure.

One of the key benefits of EKS is its integration with other AWS services. For instance, it can
integrate with AWS Identity and Access Management (IAM) for secure access control, AWS
CloudWatch for monitoring and logging, and AWS Auto Scaling for automated scaling of
Kubernetes nodes. EKS also supports a variety of networking options, such as VPC (Virtual
Private Cloud), to provide flexible network configurations tailored to different use cases.

EKS is built to provide a highly available and fault-tolerant control plane. The service
automatically manages the availability of the Kubernetes control plane nodes and
automatically distributes them across multiple availability zones. This ensures that the control

Distributed Learning and Broad Applications in Scientific Research 878

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

plane is resilient to failures and can scale to meet demand without compromising
performance.

EKS is optimized for security, with automatic patching for the Kubernetes software and built-
in encryption for data in transit and at rest. This makes it a trusted platform for enterprises
that prioritize security and compliance.

1.3 The Role of CI/CD in Modern DevOps

As organizations continue to embrace agile and DevOps practices, the need for continuous
integration and continuous delivery (CI/CD) has never been more important. CI/CD
pipelines automate the processes of building, testing, and deploying applications, ensuring
faster delivery of features and bug fixes while maintaining high quality. CI/CD enables
development teams to detect and fix issues earlier in the development lifecycle, reducing the
cost and time required to resolve bugs and improving overall application quality.

CI/CD tools, such as Jenkins, GitLab CI, and CircleCI, enable teams to automate the process
of building, testing, and deploying applications. These tools integrate with source code
repositories and are capable of triggering automated workflows whenever changes are made
to the codebase. By integrating CI/CD with Kubernetes, development teams can easily deploy
applications to an EKS cluster, ensuring that new features and updates are rapidly delivered
to production environments.

Manual deployment process, developers need to manually push updates to production,
which can lead to errors, downtime, and delays. With CI/CD pipelines, the entire process of
integrating code changes, running tests, and deploying applications to production can be
automated and streamlined, reducing the risk of human error and ensuring that the software
is always in a deployable state.

1.4 Objective of This Article

The purpose of this article is to explore how to integrate Amazon EKS with CI/CD pipelines
for optimized application delivery. By combining the scalability, availability, and security of
Amazon EKS with the automation and efficiency of CI/CD, development teams can
streamline their application deployment process, reduce operational overhead, and accelerate
the time to market. We will examine the best practices, tools, and techniques for integrating
EKS with popular CI/CD platforms to achieve continuous delivery in Kubernetes-based
environments. Through this integration, organizations can improve their overall development
workflows, ensuring that they can quickly adapt to changing business requirements while
maintaining high-quality applications in production.

2. Understanding Amazon EKS and CI/CD Pipelines

Organizations are constantly looking for ways to deliver software updates faster, more
efficiently, and with higher quality. One of the most powerful solutions to meet these
demands is the combination of Kubernetes-based services like Amazon Elastic Kubernetes

Distributed Learning and Broad Applications in Scientific Research 879

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Service (EKS) and Continuous Integration/Continuous Deployment (CI/CD) pipelines.
Together, these technologies help streamline the entire application lifecycle, from
development and testing to deployment and monitoring.

This section delves into the fundamentals of Amazon EKS, the basics of CI/CD pipelines, and
how EKS integrates seamlessly with CI/CD processes to accelerate application delivery.

2.1. Overview of Amazon EKS

Amazon Elastic Kubernetes Service (EKS) is a fully managed service provided by AWS that
simplifies the deployment, management, and scaling of containerized applications using
Kubernetes. Kubernetes, an open-source container orchestration tool, automates much of the
process of managing and scaling applications. Amazon EKS makes it even easier by handling
the undifferentiated heavy lifting, such as provisioning, scaling, and maintaining Kubernetes
clusters, allowing developers and operators to focus more on application development and
less on infrastructure management.

2.1.1 Key Features of Amazon EKS

● Scalability: Amazon EKS automatically scales the underlying infrastructure based on
your application’s requirements. Kubernetes can scale the application at the pod level,
adjusting to varying workloads. You can set up horizontal pod autoscaling based on
CPU and memory utilization, and EKS integrates with AWS Auto Scaling for EC2
instances, ensuring that the right amount of computing power is available at all times.

● Security: EKS integrates deeply with AWS Identity and Access Management (IAM)
for secure authentication and authorization. This means that access to Kubernetes
resources can be finely controlled using IAM roles, ensuring only authorized users or
services have access to the cluster. Moreover, EKS supports encryption at rest and in
transit, helping protect sensitive data.

● Reliability & High Availability: EKS is designed to be highly available. It is built
across multiple Availability Zones (AZs) within an AWS region, ensuring that even if
one zone experiences issues, the application can still run smoothly in the other zones.
Furthermore, AWS manages the control plane (the brain of the Kubernetes cluster),
ensuring that it is fault-tolerant, secure, and up-to-date with the latest patches.

● Integration with AWS Services: One of the greatest strengths of EKS is its integration
with other AWS services. For instance:

○ VPC (Virtual Private Cloud): EKS clusters run in your VPC, which means you
have full control over network configuration, including security groups and
network ACLs.

○ IAM: EKS allows fine-grained access control for both users and services.
○ ECR (Elastic Container Registry): EKS works seamlessly with Amazon ECR,

a fully managed container registry service, to store and retrieve Docker images.

Distributed Learning and Broad Applications in Scientific Research 880

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

○ CloudWatch: Amazon CloudWatch enables centralized logging and
monitoring of the health and performance of applications running in EKS,
helping teams detect issues early and optimize resources.

This tight integration with AWS services ensures that Amazon EKS can support a wide range
of application architectures, including microservices, machine learning models, and web
applications, making it an ideal platform for modern, cloud-native workloads.

2.2. Basics of CI/CD Pipelines

Continuous Integration (CI) and Continuous Deployment (CD) are software development
practices that aim to streamline the process of delivering code from development to
production.

● Continuous Deployment (CD) builds on CI by automating the deployment process.
With CD, the validated code is automatically deployed to production (or staging)
without requiring manual intervention. This eliminates the bottleneck that often
occurs with traditional deployment processes, enabling quicker feature releases and
faster bug fixes.

● Continuous Integration (CI) refers to the practice of frequently integrating code
changes into a shared repository. Developers merge their changes into a central branch
at least once a day (preferably more frequently), which triggers an automated build
and testing process. This ensures that issues are caught early, reducing the complexity
of debugging and allowing teams to deliver code faster.

The components of a typical CI/CD pipeline often include the following:

● Source Control: This is where developers store their code, typically using systems like
Git. Popular platforms include AWS CodeCommit, GitHub, or GitLab.

● Artifact Repository: Once the code passes the build and test stages, the next step is to
create deployable artifacts (e.g., Docker containers, JAR files, or other packages). These
artifacts are stored in repositories such as AWS Elastic Container Registry (ECR) for
Docker containers.

● Build & Test Tools: After changes are committed to the source control repository,
automated build tools such as Jenkins, CircleCI, or GitLab CI compile the code, run
unit tests, and check for any integration issues.

● Deployment Tools: After the artifacts are built and stored, deployment tools like
Kubernetes or AWS CodeDeploy can automatically roll out the application to various
environments, such as staging or production.

2.2.1 Benefits & Best Practices of CI/CD

The benefits of implementing a CI/CD pipeline include:

Distributed Learning and Broad Applications in Scientific Research 881

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

● Improved Quality: Frequent testing ensures that issues are detected and resolved
early.

● Faster Release Cycles: Automation accelerates the time it takes for a feature to go from
development to production.

● Reduced Risks: Automated testing and smaller, incremental changes reduce the risk
of bugs and downtime in production.

● Greater Collaboration: CI/CD practices encourage better collaboration between
development, QA, and operations teams.

Some best practices for a successful CI/CD pipeline include:

● Using feature flags or canary deployments for safer rollouts.
● Keeping the pipeline fast and efficient by minimizing bottlenecks.
● Implementing monitoring and logging to track pipeline performance and identify

issues.
● Ensuring automated tests are comprehensive and run at every step of the pipeline.

2.3. How EKS Supports CI/CD?

Integrating Amazon EKS with a CI/CD pipeline provides a robust and flexible environment
for deploying containerized applications in a scalable and automated manner. Kubernetes and
EKS, when combined with CI/CD, provide several advantages.

2.3.1 Key Advantages of Using Amazon EKS for CI/CD

● Automation: The combination of Kubernetes' powerful orchestration features with
AWS automation tools such as AWS CloudFormation and AWS CodePipeline
enables the end-to-end automation of application deployment and management. This
reduces manual errors and ensures a more consistent, faster delivery process.

● Scalability: As applications grow, EKS allows the underlying infrastructure to scale
seamlessly to accommodate increasing traffic. This is crucial for continuous
integration, where multiple teams may push code at the same time, and for continuous
deployment, where rapid scaling may be required to handle new features or updates.

● Improved Efficiency & Speed: By using containerized applications and Kubernetes
orchestration, development teams can automate repetitive tasks, reduce deployment
times, and speed up time-to-market. Kubernetes supports parallel deployments,
meaning multiple versions or microservices can be updated simultaneously without
disrupting the entire system.

2.3.2 How Kubernetes and EKS Support Continuous Deployment and Integration?

● Integration with CI/CD Tools: Amazon EKS can be easily integrated with popular
CI/CD tools like Jenkins, GitLab CI, and AWS CodePipeline. These tools can trigger

Distributed Learning and Broad Applications in Scientific Research 882

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

the deployment of new container images from Amazon ECR to EKS, ensuring that
updates are rolled out smoothly and automatically.

● Containerization: EKS runs containerized applications, which means that every
application is packaged with its dependencies and can run consistently across
different environments. This aligns perfectly with CI/CD, where developers push
container images (built in the CI phase) to a container registry like Amazon ECR. These
containers can then be easily deployed and scaled within EKS.

● Declarative Configuration: Kubernetes works with configuration files written in
YAML or JSON, which define how applications should be deployed, scaled, and
managed. This "declarative" approach works well with CI/CD tools, which can
automate the deployment process based on predefined templates. This ensures
consistency across environments, from development to production.

● Automated Scaling & Rolling Updates: Kubernetes offers native support for rolling
updates, allowing developers to deploy new versions of their applications without
downtime. EKS extends this by integrating with AWS services like Auto Scaling,
ensuring that the infrastructure can scale to meet demand. This is particularly useful
in CI/CD pipelines, where the application is continuously updated, and high
availability is crucial.

3. Prerequisites for Integrating Amazon EKS with CI/CD

Before you can seamlessly integrate Amazon Elastic Kubernetes Service (EKS) into a CI/CD
pipeline for efficient application delivery, there are several key setup steps and configurations
that need to be in place. These prerequisites cover everything from the AWS environment
setup to Kubernetes configurations, the CI/CD tools you plan to use, and containerization
requirements. Let’s walk through each step in detail to ensure you're fully prepared for a
smooth integration.

3.1 Kubernetes Setup

Once your AWS environment is ready, the next step is to set up your Kubernetes
infrastructure through Amazon EKS. EKS abstracts away much of the heavy lifting required
for managing a Kubernetes cluster, but there are still a few critical steps to get it right.

3.1.1 Namespaces & Services
Namespaces are used to organize resources within the cluster. For CI/CD integration, you’ll
likely have separate namespaces for development, testing, and production. These namespaces
help isolate environments, ensuring that changes in one environment don’t affect others.

You’ll need to define the services that will route traffic to your application pods. These
services will enable communication between various components of your application and
expose them to the outside world if needed.

Distributed Learning and Broad Applications in Scientific Research 883

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

3.1.2 Creating the EKS Cluster
You can create an EKS cluster either through the AWS Management Console, AWS CLI, or
AWS CloudFormation. This cluster will serve as the foundation for deploying and managing
your Kubernetes workloads. During cluster creation, you’ll define the following:

● Cluster Name: This will identify your Kubernetes cluster.
● Kubernetes Version: You can choose the version of Kubernetes that suits your needs.
● VPC & Subnets: EKS will need a VPC with appropriate subnets to house your worker

nodes and manage networking.
● IAM Roles: As mentioned earlier, the EKS cluster will need the appropriate IAM roles

to operate properly.

To interact with the Kubernetes cluster from your CI/CD pipeline, you’ll also need to
configure kubectl to authenticate to the cluster, typically using the AWS IAM Authenticator
for Kubernetes. This tool allows your CI/CD pipeline to authenticate securely without
hardcoding credentials.

3.2 AWS Setup Requirements

The first and most fundamental step is to establish your AWS environment, as all resources
related to EKS, Kubernetes, and other cloud infrastructure will reside here. The primary
elements to consider are AWS accounts, roles, and IAM permissions.

3.2.1 IAM Roles & Permissions
AWS Identity and Access Management (IAM) plays a critical role in securing your resources.
For EKS to interact with other AWS services like EC2, IAM roles are required. Typically, there
are two key IAM roles to configure:

● Node Role: This is associated with your EKS worker nodes and provides permissions
to access other services like CloudWatch, S3, or DynamoDB, depending on your
application needs.

● EKS Cluster Role: This role is assumed by EKS to create and manage resources like
EC2 instances, Elastic Load Balancers, and other AWS resources.

Make sure that each role has the necessary permissions. AWS provides predefined policies,
such as AmazonEKSClusterPolicy and AmazonEKSWorkerNodePolicy, to simplify this
setup.

3.2.2 AWS Account & Access Management
You’ll need an AWS account that has appropriate permissions for creating and managing
resources like EC2 instances, EKS clusters, IAM roles, and others. Typically, your account
should have the ability to access and modify the following AWS services:

● Amazon VPC: For networking and security.
● Amazon EC2: For underlying virtual machines where your EKS nodes will run.

Distributed Learning and Broad Applications in Scientific Research 884

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

● IAM: For managing access control and security policies.
● Amazon EKS: To create and manage your Kubernetes clusters.
● ECR: For storing Docker container images.

3.3 Containerization

Before deploying any applications to EKS, they need to be containerized. Containerization is
the process of packaging an application and its dependencies into a Docker container, which
can then be run on any Kubernetes cluster.

3.3.1 Automating the Build Process
One of the first tasks is to build the Docker image from the application’s source code. Once
the image is built, it is typically pushed to ECR, where it’s available for use in the deployment
phase. The CI/CD tools interact with the Docker CLI and AWS SDKs to perform these tasks.

3.3.2 Creating Docker Containers
To start, you need a Dockerfile for each application. A Dockerfile defines the steps for building
the Docker image, including:

● Base image selection (such as node, python, or ubuntu).
● Installing necessary dependencies.
● Copying application code into the image.
● Exposing required ports and defining environment variables.

Once the Docker image is built, you push it to a container registry like Amazon ECR (Elastic
Container Registry). This registry will serve as the storage location for your Docker images,
allowing your CI/CD pipeline to pull the latest version of the image and deploy it to
Kubernetes.

3.4 CI/CD Tool Integration

Once the infrastructure is ready, the next step is to integrate a CI/CD tool into the workflow.
CI/CD tools automate the process of code integration, testing, and deployment, ensuring that
your application is continuously delivered to Kubernetes with minimal manual intervention.

Popular CI/CD tools like Jenkins, GitLab CI, and CircleCI are commonly used to manage
Kubernetes deployments in EKS. Each tool has its own method of integration, but the basic
idea remains the same—automate the build, test, and deployment pipeline.

3.4.1 GitLab CI Integration
GitLab CI offers a native integration with Kubernetes, which makes the setup process more
straightforward. To integrate GitLab CI with EKS:

● Create a Kubernetes integration within the GitLab project settings.
● Provide the necessary credentials, such as the Kubernetes cluster API URL and service

account details.

Distributed Learning and Broad Applications in Scientific Research 885

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

● Use GitLab CI/CD pipelines to define jobs that build Docker images, run unit tests,
and deploy the application to EKS.

3.4.2 Jenkins Integration
Jenkins, one of the most widely used CI/CD tools, can be integrated with EKS by using
Kubernetes plugins. These plugins allow Jenkins to schedule build jobs on Kubernetes pods,
automatically scaling based on demand. The integration typically involves:

● Configuring Jenkins with the EKS cluster using the Kubernetes plugin.
● Setting up Jenkins pipelines to automate tasks like building Docker images, running

tests, and deploying applications to Kubernetes.
● Ensuring that Jenkins can interact with your AWS resources, such as ECR (for

container images) and EKS (for deployment).

These tools, along with others like CircleCI, provide robust integrations to automate
deployments to EKS. In each case, the CI/CD tool interacts with EKS using the Kubernetes
API to deploy and manage the containers in your cluster.

4. Step-by-Step Guide to Integration

4.1 Setting Up Amazon EKS Cluster

Before you can begin deploying applications, you need to set up an Amazon EKS cluster. This
involves configuring the cluster itself, as well as setting up the necessary tools for managing
Kubernetes.

4.1.1 Creating & Configuring an EKS Cluster

● Create an EKS Cluster:
The first step is to create an EKS cluster on AWS. This can be done through the AWS
Management Console, AWS CLI, or infrastructure-as-code tools like Terraform. When
setting up the cluster, you need to define the following:

○ VPC (Virtual Private Cloud): EKS needs a VPC to run. You can either use an
existing VPC or let EKS create a new one for you.

○ Subnets: EKS requires private and public subnets in your VPC for networking.
○ Node Group: Node groups define the EC2 instances that will run your

containers. These nodes need to be properly configured with the necessary
IAM roles, security groups, and other resources.

● AWS provides easy-to-follow documentation for setting up EKS, which can guide you
through these steps.

4.1.2 Configure kubectl for Managing EKS Clusters
After the cluster is up and running, the next step is configuring the Kubernetes CLI (kubectl)
to interact with it. First, install the AWS CLI and kubectl if you haven’t already. Once that’s

Distributed Learning and Broad Applications in Scientific Research 886

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

done, use the following command to configure kubectl to access your EKS cluster:
aws eks --region <region> update-kubeconfig --name <cluster_name>

● This command fetches the kubeconfig file, which contains the necessary credentials to
access your EKS cluster using kubectl.

4.1.3 Verify Cluster Access
To ensure that kubectl is correctly configured, you can run the following command to check
the cluster status:
kubectl get nodes

● This should return a list of nodes within your EKS cluster, indicating that kubectl can
successfully interact with the cluster.

4.2 Creating & Configuring CI/CD Pipeline

With the EKS cluster set up, the next step is to create a CI/CD pipeline that automates the
build, test, and deployment process. You can choose from a variety of CI/CD tools, such as
Jenkins, GitLab CI, CircleCI, or AWS CodePipeline.

4.2.1 Choosing a CI/CD Tool

For this example, let’s assume we are using Jenkins as the CI/CD tool. However, the
principles remain the same for other tools as well. Jenkins is a powerful automation tool that
integrates well with Kubernetes and provides a flexible environment for setting up automated
pipelines.

4.2.2 Configuring the CI/CD Pipeline

● Set Up Jenkins:
First, set up Jenkins on an EC2 instance or use a managed service like Amazon EKS or
AWS CodePipeline for hosting Jenkins. You will need the Jenkins Master and Agent
nodes set up. Install necessary plugins such as:

○ Kubernetes Plugin for Jenkins
○ Docker Plugin
○ Git Plugin

● Integrating with Git Repositories:
You need to connect Jenkins with your Git repository (GitHub, GitLab, Bitbucket, etc.).
You can do this by installing the relevant plugin (e.g., GitHub Plugin) and setting up
webhook triggers from your repository to automatically trigger the pipeline when new
code is pushed.

● Pipeline Script:
The pipeline script defines the sequence of stages in the CI/CD pipeline. Typically,
these stages would include:

Distributed Learning and Broad Applications in Scientific Research 887

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

○ Build: The code is built into a Docker image. This step involves pulling
dependencies and packaging the code into a container image.

○ Test: Running unit tests and integration tests to verify that the code works as
expected.

○ Deploy: The Docker image is pushed to a container registry (like Amazon
ECR), and then Kubernetes is updated with the new version of the application.

● Jenkins can interact with EKS to deploy the application using kubectl commands in
the pipeline script.

4.3 Deployment Automation with Helm

One of the key tools for managing Kubernetes deployments is Helm, a package manager for
Kubernetes that simplifies the deployment and management of applications. By using Helm
charts, you can automate and standardize the deployment process.

4.3.1 Using Helm Charts to Deploy Applications to EKS

● Install Helm:
First, install Helm on your local machine or Jenkins environment. Then, initialize the
Helm client and set up a Helm repository:

helm repo add stable https://charts.helm.sh/stable

helm repo update

● Create a Helm Chart for Your Application:
Helm charts define the structure of a Kubernetes application. You can create a custom
Helm chart for your application by running:
helm create <chart_name>

This generates a scaffold that you can customize with your application’s configuration
files, such as deployment manifests, service definitions, and ingress configurations.

4.3.2 Automating Helm Deployments:
In your Jenkins pipeline, you can add a stage to deploy your application using Helm:

helm upgrade --install <release_name> <chart_path> --namespace <namespace> --set
image.repository=<image_repo> --set image.tag=<image_tag>

● This command ensures that your application is deployed or updated in EKS in a
repeatable and automated manner, with Helm taking care of any necessary updates to
your Kubernetes resources.

4.4 Testing & Validation in CI/CD Pipeline

Distributed Learning and Broad Applications in Scientific Research 888

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Automated testing is an essential part of any CI/CD pipeline. This ensures that issues are
detected early in the development cycle, preventing errors from reaching production.

4.4.1 Setting Up Unit, Integration, & Load Testing

● Unit Tests:
These tests ensure that individual components of your application work as expected.
They should be executed during the build stage of your pipeline. Tools like JUnit or
pytest can be used to write and run unit tests.

● Integration Tests:
After unit tests, integration tests should be run to verify that different components of
the application interact correctly. These tests can be performed in a Kubernetes
environment by spinning up test instances of dependent services.

● Load Testing:
To ensure that your application can handle production-level traffic, load testing
should be incorporated into the pipeline. Tools like JMeter or Locust can be used to
simulate traffic and measure the application's scalability.

● Best Practices for Test Automation:
○ Run tests in isolated environments to prevent interference with production

systems.
○ Ensure that all tests (unit, integration, and load) pass before promoting the

application to production.
○ Automate the rollback process in case a test fails, allowing you to quickly revert

to a stable version.

4.5 Managing Secrets and Configuration

Sensitive data such as API keys, database credentials, and certificates must be stored securely.
AWS provides several tools to manage secrets in a secure manner.

4.5.1 Integration of AWS Secrets Manager with CI/CD Pipeline

● Store Secrets in AWS Secrets Manager:
Store sensitive data like database passwords, API keys, and SSH keys in AWS Secrets
Manager. This service encrypts secrets and allows controlled access via IAM roles and
policies.

4.5.2 Access Secrets in Jenkins Pipeline:
Use the AWS CLI or SDK to retrieve secrets from Secrets Manager. For example:
aws secretsmanager get-secret-value --secret-id <secret_name> --query SecretString --output
text

● This allows your pipeline to securely access secrets without hardcoding them into your
source code or configuration files.

Distributed Learning and Broad Applications in Scientific Research 889

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

4.6 Monitoring & Logging

Once your applications are deployed, it's critical to monitor their performance and
troubleshoot any issues that arise.

4.6.1 Setting Up CloudWatch & Prometheus

● Analyzing Logs for Error Resolution:
To troubleshoot issues in your pipeline or applications, use AWS CloudWatch Logs
for aggregating logs from your applications and Kubernetes pods. CloudWatch Logs
provide a centralized log management solution where you can search, filter, and
analyze logs for error resolution.

● Prometheus for Kubernetes Monitoring:
Prometheus is widely used for monitoring Kubernetes environments. You can deploy
Prometheus on your EKS cluster to collect metrics from your application pods and
other Kubernetes resources. Prometheus integrates with Grafana for powerful
visualization of your metrics.

● CloudWatch for Monitoring:
AWS CloudWatch provides native monitoring for AWS services. You can configure
CloudWatch to monitor metrics such as CPU usage, memory usage, and network
traffic for your EKS clusters and applications. Set up alarms to notify you of any
thresholds that are breached, such as high CPU or memory utilization.

5. Conclusion

Integrating Amazon EKS with CI/CD pipelines offers a powerful solution for modern
application delivery, combining the flexibility of Kubernetes with the automation benefits of
continuous integration and continuous delivery. By setting up a robust CI/CD pipeline for an
EKS environment, developers can streamline their workflows, reduce manual intervention,
and speed up getting applications from development to production. This integration
simplifies deployment and provides the tools for scaling and managing cloud-native
applications effectively.

Integrating EKS with a CI/CD pipeline typically involves setting up various components like
code repositories, build automation tools, container registries, and deployment strategies.
Leveraging services like AWS CodePipeline, AWS CodeBuild, and third-party tools like
Jenkins, GitLab, or CircleCI can help automate the flow from code commit to deployment.
These tools ensure that every change is automatically built, tested, and deployed, reducing
human error and increasing the reliability of the entire application delivery process.

Distributed Learning and Broad Applications in Scientific Research 890

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

One of the key benefits of automating application delivery through Amazon EKS and CI/CD
is consistency. By defining infrastructure as code and implementing automated testing and
deployment processes, teams can ensure that applications behave consistently across different
environments. This results in fewer bugs, faster recovery times, and a more stable production
environment. Furthermore, the scalability inherent in Kubernetes allows teams to quickly
scale their applications based on demand without worrying about manually provisioning new
resources. This ability to scale on demand is crucial for supporting dynamic and rapidly
growing applications.

Another significant benefit is the speed at which features and updates can be rolled out. By
reducing the friction in the deployment pipeline, new features can be delivered to customers
faster, enhancing the agility of development teams and allowing businesses to respond to
market needs more swiftly. Moreover, automation helps reduce the operational overhead,
enabling developers to focus more on innovation and less on repetitive tasks.

Looking ahead, the future of cloud-native application development and automation appears
incredibly promising. As more organizations move toward cloud-first strategies, the demand
for automated, scalable, and reliable application delivery systems will continue to grow. With
the evolution of Kubernetes, AWS, and CI/CD tools, we can expect to see even more
significant improvements in how applications are built, tested, deployed, and maintained.
Continuous advancements in monitoring, cost optimization, and resource management will
allow teams to accelerate their application delivery and manage their cloud environments
with more precision and efficiency.

In summary, integrating Amazon EKS with CI/CD pipelines is a game-changer for
organizations looking to modernize their software development and delivery processes.
Organizations can improve efficiency, reliability, and speed by automating the entire
pipeline—from code commit to production deployment. As cloud-native technologies evolve,
the combination of EKS and CI/CD will play a central role in shaping the future of software
development, making it faster, more efficient, and more adaptable to the market's needs.

6. References

1. Bryant, D., & Marín-Pérez, A. (2018). Continuous delivery in java: essential tools and best
practices for deploying code to production. O'Reilly Media.

2. Chen, G. (2019). Modernizing Applications with Containers in Public Cloud. Amazon Web
Services.

3. Arundel, J., & Domingus, J. (2019). Cloud Native DevOps with Kubernetes: building,
deploying, and scaling modern applications in the Cloud. O'Reilly Media.

Distributed Learning and Broad Applications in Scientific Research 891

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

4. Saito, H., Lee, H. C. C., & Wu, C. Y. (2019). DevOps with Kubernetes: accelerating software
delivery with container orchestrators. Packt Publishing Ltd.

5. Gade, K. R. (2017). Integrations: ETL vs. ELT: Comparative analysis and best practices.
Innovative Computer Sciences Journal, 3(1).

6. Labouardy, M. (2018). Hands-On Serverless Applications with Go: Build real-world,
production-ready applications with AWS Lambda. Packt Publishing Ltd.

7. Farcic, V. (2019). The DevOps 2.4 Toolkit: Continuous Deployment to Kubernetes:
Continuously Deploying Applications With Jenkins to a Kubernetes Cluster. Packt Publishing
Ltd.

8. Amazon, E. C. (2015). Amazon web services. Available in: http://aws. amazon.
com/es/ec2/(November 2012), 39.

9. WEB, E., DE PADRES, A. T. E. N. C. I. Ó. N., SOCIAL, S., & TAPIAS, M. J. J. (2009). Sobre
nosotros. Línea) México, disponible en http://www. perotes-pedrugada. com/contacto. asp
(accesado el 20 de Junio de 2009.➢ Wikipedia, La Enciclopedia Libre (2009)“Embutido”(En
Línea) disponible en es. wikipedia. org/wiki/Embutido.

10. King, B. M., & Minium, E. W. (2003). Statistical reasoning in psychology and education.
New York: Wiley.

11. Hyldegård, J. (2004). Det personlige informationssystem. Biblioteksarbejde, (69), 31-40.

12. Paakkunainen, O. (2019). Serverless computing and FaaS platform as a web application
backend.

13. Mehtonen, V. (2019). Research on building containerized web backend applications from
a point of view of a sample application for a medium sized business.

14. Sahin, M. (2019). GitOps basiertes Continuous Delivery für Serverless Anwendungen
(Master's thesis).

15. Freeman, R. T. (2019). Building Serverless Microservices in Python: A complete guide to
building, testing, and deploying microservices using serverless computing on AWS. Packt
Publishing Ltd.

16. Boda, V. V. R., & Immaneni, J. (2019). Streamlining FinTech Operations: The Power of
SysOps and Smart Automation. Innovative Computer Sciences Journal, 5(1).

17. Nookala, G., Gade, K. R., Dulam, N., & Thumburu, S. K. R. (2019). End-to-End Encryption
in Enterprise Data Systems: Trends and Implementation Challenges. Innovative Computer
Sciences Journal, 5(1).

Distributed Learning and Broad Applications in Scientific Research 892

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

18. Komandla, V. Enhancing Security and Fraud Prevention in Fintech: Comprehensive
Strategies for Secure Online Account Opening.

19. Komandla, V. Transforming Financial Interactions: Best Practices for Mobile Banking App
Design and Functionality to Boost User Engagement and Satisfaction.

20. Gade, K. R. (2017). Integrations: ETL/ELT, Data Integration Challenges, Integration
Patterns. Innovative Computer Sciences Journal, 3(1).

21. Gade, K. R. (2017). Migrations: Challenges and Best Practices for Migrating Legacy Systems
to Cloud-Based Platforms. Innovative Computer Sciences Journal, 3(1).

22. Katari, A. (2019). ETL for Real-Time Financial Analytics: Architectures and Challenges.
Innovative Computer Sciences Journal, 5(1).

23. Katari, A. (2019). Data Quality Management in Financial ETL Processes: Techniques and
Best Practices. Innovative Computer Sciences Journal, 5(1).

24. Gade, K. R. (2018). Real-Time Analytics: Challenges and Opportunities. Innovative
Computer Sciences Journal, 4(1).

25. Muneer Ahmed Salamkar, and Karthik Allam. “Data Lakes Vs. Data Warehouses:
Comparative Analysis on When to Use Each, With Case Studies Illustrating Successful
Implementations”. Distributed Learning and Broad Applications in Scientific Research, vol. 5,
Sept. 2019

26. Muneer Ahmed Salamkar. Data Modeling Best Practices: Techniques for Designing
Adaptable Schemas That Enhance Performance and Usability. Distributed Learning and
Broad Applications in Scientific Research, vol. 5, Dec. 2019

27. Naresh Dulam, et al. “Kubernetes Operators: Automating Database Management in Big
Data Systems”. Distributed Learning and Broad Applications in Scientific Research, vol. 5,
Jan. 2019

28. Naresh Dulam, and Karthik Allam. “Snowflake Innovations: Expanding Beyond Data
Warehousing ”. Distributed Learning and Broad Applications in Scientific Research, vol. 5,
Apr. 2019

Distributed Learning and Broad Applications in Scientific Research 893

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

29. Naresh Dulam. NoSQL Vs SQL: Which Database Type Is Right for Big Data?. Distributed
Learning and Broad Applications in Scientific Research, vol. 1, May 2015, pp. 115-3

30. Sarbaree Mishra, et al. Improving the ETL Process through Declarative Transformation
Languages. Distributed Learning and Broad Applications in Scientific Research, vol. 5, June
2019

31. Sarbaree Mishra. A Novel Weight Normalization Technique to Improve Generative
Adversarial Network Training. Distributed Learning and Broad Applications in Scientific
Research, vol. 5, Sept. 2019

32. Muneer Ahmed Salamkar, and Karthik Allam. Architecting Data Pipelines: Best Practices
for Designing Resilient, Scalable, and Efficient Data Pipelines. Distributed Learning and Broad
Applications in Scientific Research, vol. 5, Jan. 2019

