
Distributed Learning and Broad Applications in Scientific Research 910

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Cloud Cost Monitoring Strategies for Large-Scale Amazon EKS
Clusters
Babulal Shaik, Cloud Solutions Architect at Amazon Web Services, USA

Abstract:

Managing costs in cloud environments has become increasingly important as organizations
scale their infrastructure. Keeping track of cloud spending can be a significant challenge for
Kubernetes-based systems like Amazon EKS, where multiple services and workloads run
across dynamic and complex clusters. This article proposes a robust cost-monitoring approach
for large-scale EKS clusters, helping organizations optimize their cloud expenditure while
maintaining efficient performance. The focus is leveraging key strategies, tools, and
methodologies that enable real-time cost visibility and accountability across multiple tenants
and workloads. It highlights the importance of integrating cost-tracking solutions with
Kubernetes-native monitoring tools and practices, such as Prometheus and AWS Cost
Explorer, to gather detailed insights into resource utilization and cost distribution. By
adopting these strategies, enterprises can identify inefficiencies, reduce wastage, and better
understand their cloud spending patterns. Ultimately, this article guides organizations
seeking to implement a practical cost-monitoring framework, providing a clear, actionable
solution for managing and optimizing cloud expenses in large, multi-tenant EKS
environments.

Keywords: Amazon EKS, Cloud Cost Monitoring, Cost Allocation, Multi-Tenant Clusters,
Kubernetes, Real-Time Monitoring, Cost Optimization, Resource Management, AWS Cost
Explorer, CloudWatch, Kubernetes Resource Requests, Cost Allocation Tags, Third-Party
Monitoring Tools, KubeCost, CloudHealth, Budget Alerts, CI/CD Integration, Tenant-
Specific Quotas, Kubernetes Labels, Pod-Level Monitoring, Namespace-Level Monitoring,
Spot Instances, Autoscaling, Persistent Storage Management, Reserved Instances, Savings
Plans.

1. Introduction

As organizations increasingly move to cloud-native architectures, Kubernetes has emerged as
a dominant platform for orchestrating containerized applications. Among the many
Kubernetes offerings available, Amazon Elastic Kubernetes Service (EKS) stands out as a
fully managed solution that simplifies the deployment, management, and scaling of
containerized applications using Kubernetes. For enterprises leveraging large-scale EKS
clusters, one of the most critical yet often overlooked aspects of cloud operations is cost
monitoring. Without proper cost management strategies in place, organizations can quickly

Distributed Learning and Broad Applications in Scientific Research 911

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

face runaway cloud expenses that hinder their ability to scale effectively and maintain
operational efficiency.

1.1 Overview of Amazon EKS

Amazon EKS is Amazon Web Services' (AWS) managed Kubernetes service that takes care of
much of the operational overhead traditionally associated with running Kubernetes clusters.
It eliminates the need for users to manually manage Kubernetes masters and infrastructure,
allowing organizations to focus on deploying and scaling applications rather than worrying
about the complexities of cluster maintenance. EKS integrates seamlessly with other AWS
services, providing a robust solution for container orchestration that is highly available,
secure, and scalable. With the rapid adoption of containerized environments, EKS has become
the go-to choice for businesses looking to leverage the full power of Kubernetes in their cloud-
based applications.

Amazon EKS has become a go-to solution for enterprises seeking a fully managed, scalable
platform that reduces the complexity of deploying and managing Kubernetes clusters. Its
integration with AWS services, such as Elastic Load Balancing (ELB), AWS Identity and
Access Management (IAM), and Amazon RDS, ensures that organizations can easily build
and manage applications in a secure and highly available environment.

1.2 Importance of Cost Monitoring

Cloud cost monitoring is essential to understanding how resources are being utilized and
where inefficiencies may exist. By actively tracking and optimizing costs, organizations can
prevent over-provisioning, avoid unnecessary waste, and gain better visibility into the
financial health of their cloud operations. With proper cost monitoring tools and strategies,
businesses can ensure that they are only paying for the resources they need, leading to a more
cost-effective approach to running containerized workloads on Amazon EKS.

While the benefits of cloud computing, such as scalability and flexibility, are undeniable, these
advantages can quickly turn into a double-edged sword if cost monitoring is not properly
implemented. Without effective cost management, large-scale cloud environments can lead to
unexpected cost spikes that drain financial resources and significantly impact the bottom line.
This is particularly true for organizations running complex applications and services in
environments like Amazon EKS, where the number of containers, nodes, and associated AWS
resources can grow rapidly.

1.3 Challenges in Multi-Tenant Clusters

Challenges are compounded by the dynamic nature of Kubernetes clusters, where workloads
are constantly being deployed, scaled, and terminated. The ephemeral nature of containers
means that traditional methods of tracking costs—based on static resource usage—are often
insufficient. Without granular insights into how each team or application is consuming
resources, it becomes nearly impossible to assign the appropriate share of costs to each tenant.

Distributed Learning and Broad Applications in Scientific Research 912

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

The complexities of cost monitoring increase when dealing with multi-tenant Kubernetes
clusters—a common scenario in large-scale EKS deployments. In a multi-tenant environment,
multiple teams or applications share the same underlying infrastructure. This can make it
difficult to allocate costs accurately, especially when resources such as CPU, memory, storage,
and networking are shared across tenants. Additionally, tenants may not have visibility into
the underlying infrastructure usage, leading to potential misunderstandings or discrepancies
in cost allocation.

1.4 Purpose of the Article

This article aims to provide strategies for effectively monitoring and allocating costs within
large-scale Amazon EKS clusters. We will explore a range of techniques for achieving
transparent and accurate cost attribution in multi-tenant environments, focusing on tools, best
practices, and operational strategies that can help organizations optimize their cloud
expenditures. By the end of this article, readers will have a clear understanding of how to
implement a comprehensive cloud cost monitoring framework for their Amazon EKS clusters,
ensuring more efficient resource management and better control over cloud spending.

Enterprises can avoid unexpected costs, ensure fair resource allocation among tenants, and
optimize their cloud environments for cost-effectiveness without compromising performance
or scalability.

2. Challenges of Cost Management in Amazon EKS

Amazon Elastic Kubernetes Service (EKS) offers a powerful and flexible way to manage
containerized applications at scale. However, like any cloud-based infrastructure, managing
costs effectively in EKS can present several unique challenges, particularly for large-scale
deployments. The dynamic nature of cloud resources, resource over-provisioning, lack of
visibility in multi-tenant environments, and issues with scaling all contribute to the
complexity of cost management in EKS.

2.1 Dynamic Nature of Cloud Resources & Its Impact on Cost

One of the primary advantages of using Amazon EKS is its ability to dynamically scale
resources based on the needs of your applications. However, this same flexibility introduces
a challenge when it comes to cost management. Cloud resources, such as compute instances
(EC2), storage (EBS), and networking, are provisioned on-demand. As application load
fluctuates, the resources allocated to the Kubernetes cluster must also adjust.

While Amazon provides a pay-as-you-go model that helps reduce waste in theory, users often
struggle to align their resource allocation with actual demand. Misalignments lead to higher-
than-expected bills, especially if usage spikes in ways that aren’t accounted for in the original
cost estimates.

This dynamic scaling means that you may be paying for resources you don’t need at any given
time, or conversely, you may under-provision resources and risk service degradation during

Distributed Learning and Broad Applications in Scientific Research 913

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

peak demand periods. EKS clusters can also see increased usage of resources when
autoscaling occurs rapidly or unexpectedly, leading to a sudden rise in costs. The challenge
lies in predicting and controlling these fluctuations—particularly when workloads vary
throughout the day or week—without over-spending.

2.2 Lack of Visibility in Multi-Tenant Environments

Amazon EKS clusters are shared by multiple teams or departments in a multi-tenant
environment. While this approach helps optimize resource utilization across the organization,
it also complicates the process of tracking and allocating costs. Without adequate visibility
into how resources are being consumed across various tenants, it becomes difficult to assign
costs fairly, which can lead to confusion or disputes over billing.

In a multi-tenant EKS environment, each tenant or team could be using the same pool of
resources, but how much they actually consume may not always be immediately clear. This
lack of granular visibility can result in some teams over-consuming resources without fully
realizing the impact on their costs, while others may under-utilize resources and thus bear a
higher cost than their share.

Shared responsibility models complicate the picture even further. In multi-tenant
environments, it’s important to determine who is responsible for the cost of shared resources,
such as network bandwidth or storage. Without clear cost-sharing policies,
misunderstandings can arise about who should bear which portion of the cost burden.

Organizations can implement cost allocation tagging within their AWS infrastructure. By
tagging resources with identifiers related to specific teams, projects, or environments, you can
track usage more precisely and generate cost reports that break down expenses by tenant.
However, this requires a disciplined approach to tagging and monitoring, which can be time-
consuming and error-prone if not managed properly.

2.3 Resource Over-Provisioning: The Hidden Cost

Efficient resource allocation is a critical factor in keeping cloud costs under control. In many
EKS clusters, resource over-provisioning is a common issue, where more resources (such as
CPU, memory, or storage) are allocated to pods or nodes than are actually needed for the
workloads running on them. This over-allocation can occur due to a lack of granular control,
misconfigured auto-scaling settings, or overly conservative assumptions about the resource
needs of applications.

It’s crucial for organizations to adopt more accurate resource management practices. This
includes setting appropriate resource requests and limits for Kubernetes pods, regularly
monitoring usage trends, and making adjustments to auto-scaling policies based on actual
performance data. Over time, fine-tuning these settings can result in significant cost savings.

Over-provisioning creates significant cost inefficiencies. For example, if an EKS cluster is
configured with nodes that have more CPU or memory than necessary, the cluster might end

Distributed Learning and Broad Applications in Scientific Research 914

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

up running under-utilized, leading to a wastage of resources and higher costs. Furthermore,
auto-scaling mechanisms often set a buffer of resources to account for unexpected spikes in
demand, but if these buffers are too large, they may end up costing far more than necessary.

2.4 Scaling Issues & Cost Forecasting

Scaling issues are another significant challenge when managing costs in Amazon EKS. EKS
supports both vertical scaling (increasing the capacity of individual nodes) and horizontal
scaling (adding more nodes to the cluster). While scaling out can help ensure high availability
and responsiveness, it can also add considerable complexity to cost forecasting.

Forecasting becomes even more difficult when workloads scale unpredictably or suddenly.
For example, during peak periods or product launches, resource demand may surge, driving
up the cost of compute and storage. Similarly, workloads may need to scale down in times of
lower demand, but if the autoscaling configuration is too aggressive, there’s a risk of losing
valuable resources too quickly, leading to performance degradation.

Rapidly scaling applications, it’s difficult to predict how much capacity will be needed at any
given time. Rapidly scaling workloads can push the limits of resource allocation, especially
when nodes need to be added or removed dynamically. These sudden changes in resource
usage can create large variances in costs, making it harder for teams to anticipate their cloud
expenses and stay within budget.

Effective cost forecasting in EKS requires more than just setting up autoscaling policies. It
involves understanding the growth patterns of your application, tracking usage trends over
time, and incorporating elasticity into your cost models. By combining historical usage data
with predictive analytics, organizations can improve their ability to anticipate spikes in
demand & optimize their scaling configurations to reduce the risk of unexpected cost surges.

3. Cloud Cost Monitoring Strategies for Large-Scale Amazon EKS Clusters

As organizations scale their Kubernetes workloads on Amazon EKS (Elastic Kubernetes
Service), managing cloud costs becomes an increasingly critical concern. Kubernetes, being a
highly flexible and scalable orchestration platform, can result in significant cost variability
depending on how resources are allocated, monitored, and managed. Real-time cloud cost
monitoring helps businesses optimize usage, avoid overspending, and ensure that resources
are being used efficiently across large-scale clusters. This article explores key strategies for
real-time cloud cost monitoring on Amazon EKS.

3.1 Utilizing AWS Cost Explorer for EKS Cost Breakdown

AWS Cost Explorer is a powerful tool that enables teams to visualize and analyze their cloud
spending. By using this tool, organizations can break down their EKS costs in a detailed,
actionable way. Cost Explorer gives a high-level view of your AWS usage and spending
patterns, but it can also drill down into specific services like Amazon EC2 instances, Amazon
EBS volumes, or Amazon S3 buckets, which may be integral to your EKS setup.

Distributed Learning and Broad Applications in Scientific Research 915

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

To effectively monitor EKS costs using Cost Explorer, follow these steps:

● Set up Reports & Alerts: You can create custom reports that automatically track EKS-
related costs over time. This way, you’re always in the loop about how your spending
evolves, allowing you to make proactive adjustments.

● Breakdown by Usage Type: You can further break down costs based on different
usage types, such as compute, storage, and networking. For example, you may notice
that a high portion of your costs is due to EC2 instances running your Kubernetes
worker nodes, or perhaps storage-related costs for persistent volumes.

● Analyze Trends: By looking at historical data, Cost Explorer can help identify cost
spikes or trends. For instance, if there’s a sudden increase in costs, it might indicate
that more resources are being provisioned than necessary, or that there's inefficient
scaling in your cluster.

● Filter by Service: Within Cost Explorer, you can filter costs specifically for Amazon
EKS by selecting the "EKS" service category. This allows you to isolate costs directly
tied to your Kubernetes workloads.

3.2 Integrating Cost Monitoring with CI/CD Pipelines

Integrating cost monitoring into your CI/CD (Continuous Integration/Continuous Delivery)
pipelines ensures that cost optimization is part of the development process. By embedding
cost-awareness into the CI/CD flow, teams can continuously evaluate the cost implications of
their code changes.

Here’s how to do it:

● Cost-aware Testing: By simulating various load scenarios (such as stress testing)
within your staging or development environments, you can identify potential
inefficiencies early on. If an application update causes an unnecessary resource spike,
developers can correct it before deployment.

● Cost Checks During Code Deployments: During the CI/CD pipeline, you can add
automated steps to check the projected costs of a deployment before it is pushed to
production. This could involve comparing the resource requirements of the new
version against historical data to determine whether it’s likely to incur higher costs.

● Feedback Loops: Automated cost monitoring can also create a feedback loop where
developers are alerted when their code changes result in unexpected cost increases.
This helps foster a culture of cost-consciousness within the development team.

3.3 Integrating CloudWatch for Real-Time Cost & Resource Monitoring

AWS CloudWatch is a comprehensive monitoring tool that helps track various metrics from
EKS clusters in real time. When integrated with Amazon EKS, CloudWatch provides detailed
insights into the performance and resource consumption of your Kubernetes workloads. By

Distributed Learning and Broad Applications in Scientific Research 916

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

using CloudWatch metrics, teams can monitor cost-related factors such as CPU, memory, and
network usage in real-time, which are key drivers of cloud costs.

Here are some best practices for integrating CloudWatch with EKS:

● Monitor EC2 Instances: CloudWatch also provides visibility into the performance of
EC2 instances used by EKS nodes. By tracking metrics such as CPU utilization, disk
I/O, and network traffic, you can ensure that instances are right-sized for your
workloads.

● Automated Scaling Based on Metrics: You can configure CloudWatch to trigger auto-
scaling actions based on specific thresholds. For example, if CPU usage exceeds a set
threshold for a prolonged period, CloudWatch can automatically scale the cluster to
accommodate the increased demand.

● Use CloudWatch Dashboards: Build CloudWatch Dashboards to create visual
representations of your EKS cluster's performance and costs. This gives decision-
makers and engineers a real-time overview of the resources in use and helps spot any
potential inefficiencies.

● Set Alarms for Resource Utilization: By setting alarms in CloudWatch for excessive
CPU or memory usage, you can quickly identify when workloads are consuming more
resources than expected. This early detection can help prevent resource over-
provisioning, which directly translates into unnecessary costs.

3.4 Kubernetes Resource Requests & Limits

One of the most effective strategies for controlling EKS costs is setting appropriate resource
requests and limits for each container in your Kubernetes cluster. Resource requests define
the minimum amount of CPU and memory a container needs, while limits specify the
maximum allowed resources.

Properly configuring these parameters ensures that Kubernetes schedules workloads
efficiently, preventing over-provisioning. When workloads request more resources than they
actually need, it can lead to wasted capacity and higher cloud costs.

Here’s how to set up resource requests and limits:

● Enable Resource Auto-Scaling: Kubernetes offers features like the Horizontal Pod
Autoscaler (HPA) and the Vertical Pod Autoscaler (VPA), which adjust the resources
allocated to pods based on actual usage patterns. This dynamic scaling helps prevent
over-provisioning, ensuring that workloads only use the resources they need at any
given time.

● Avoid Over-Provisioning: By setting resource requests that reflect the actual needs of
your workloads, you prevent Kubernetes from assigning excessive resources that are
not being used. For example, if a container only needs 1 vCPU and 2 GB of memory to

Distributed Learning and Broad Applications in Scientific Research 917

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

run, but requests 2 vCPUs and 4 GB of memory, it will take up unnecessary resources,
increasing your costs.

● Monitor Resource Usage with Metrics Server: Kubernetes’ Metrics Server provides
insights into the actual resource usage of your pods and containers. You can use this
data to refine your resource requests and limits over time, ensuring that they are
neither too high nor too low.

3.5 Third-Party Monitoring Tools for Enhanced Visibility

While AWS provides native tools like Cost Explorer and CloudWatch, many organizations
opt to use third-party monitoring and cost management tools to gain more granular insights
into their cloud usage. These tools often offer additional features and more intuitive
dashboards that make cost management easier.

Popular third-party tools include:

● CloudHealth by VMware: CloudHealth provides a comprehensive cloud
management platform that integrates with AWS and Kubernetes environments. It
offers cost optimization recommendations, detailed cost reports, and insights into
resource usage trends. CloudHealth’s dashboards are customizable, allowing teams to
focus on specific aspects of their cloud costs.

● KubeCost: KubeCost is an open-source tool specifically designed for Kubernetes cost
monitoring. It integrates directly with Kubernetes clusters and provides visibility into
the costs associated with various workloads, namespaces, and services. With
KubeCost, you can track costs down to the pod level, which can be invaluable when
managing large, complex clusters.

● Kubecost + CloudHealth Integration: Some teams use a combination of KubeCost for
Kubernetes-specific cost monitoring and CloudHealth for broader cloud management.
This hybrid approach allows organizations to have a clear view of both Kubernetes
resource usage and the broader AWS infrastructure.

3.6 Cost Allocation Tags for Better Visibility

Cost Allocation Tags are one of the simplest yet most effective ways to break down your AWS
costs. These tags are custom metadata labels that can be attached to AWS resources. By setting
up tags on your EKS resources, you can monitor and allocate costs based on different criteria,
such as by tenant, environment, service, or project.

For example:

● Environment-based Tagging: For development, staging, and production
environments, you can apply environment-specific tags. This helps separate costs
related to non-production workloads (which might be smaller and less critical) from
those of production environments.

Distributed Learning and Broad Applications in Scientific Research 918

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

● Tenant-based Tagging: If your EKS cluster serves multiple tenants or customers, you
can tag resources according to the tenant they belong to. This makes it easier to track
costs associated with each tenant’s workloads and helps identify which customers are
generating the highest cloud costs.

● Service-based Tagging: You can also tag resources based on the specific services they
support. For instance, if you have several microservices running on your cluster,
tagging each service will give you a clear view of how much each service is
contributing to your total cloud spend.

With these tags in place, you can filter AWS billing reports to better understand where money
is being spent and adjust your resource usage accordingly.

3.7 Setting Up Budget Alerts & Automation

One of the best ways to keep cloud costs under control is to set up automated budget alerts.
These alerts can notify teams when costs exceed certain thresholds, enabling them to take
action before overspending becomes a serious issue.

In AWS, you can set up budgets using AWS Budgets. This tool allows you to:

● Automate Actions: In addition to alerts, you can automate actions in response to
certain budget thresholds. For instance, if a cost threshold is breached, you can set up
an automation rule to scale down certain services or temporarily halt non-critical
workloads.

● Trigger Alerts: Once a budget threshold is breached, you can configure AWS to send
notifications via email, SMS, or Slack to relevant stakeholders. This ensures that the
right people are notified when action is needed to curb costs.

● Set Budget Thresholds: Create custom budgets based on specific criteria, such as a
monthly or daily budget for your EKS-related services. You can set different budgets
for each environment, service, or region.

4. Cost Allocation Techniques in Multi-Tenant Environments

As organizations scale their cloud infrastructure, managing costs effectively becomes
increasingly important, especially in multi-tenant environments. Amazon Elastic Kubernetes
Service (EKS) offers a powerful platform for running containerized applications at scale, but
with this power comes complexity—particularly when it comes to tracking and allocating
costs across multiple tenants or departments.

We will explore several cost allocation techniques tailored for multi-tenant environments,
focusing on tagging, resource grouping, tenant-specific quotas, Kubernetes labels, and
pod/namespace-level monitoring. These strategies will help organizations maintain visibility
over their EKS costs and ensure fair and efficient cost distribution among different teams,
departments, or customers.

Distributed Learning and Broad Applications in Scientific Research 919

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

4.1 Tagging & Resource Grouping

One of the most fundamental techniques for managing cloud costs is using resource tags.
Tagging is a powerful tool for categorizing and tracking costs across different parts of your
cloud environment. In Amazon EKS, tagging resources such as EC2 instances, load balancers,
and persistent storage volumes can help you allocate costs more accurately to specific tenants,
teams, or projects.

4.1.1 Resource Grouping

Resource grouping enables more refined cost management. By grouping resources by tenant
or department, you can create logical boundaries that correspond to organizational structures.
This is particularly useful in environments where multiple teams share the same EKS cluster.
By defining resource groups, such as one for each tenant, you can track the resources each
tenant consumes without worrying about resource overlap or unaccounted costs.

You might group all EC2 instances, storage volumes, and networking components used by
the "Sales" tenant into a single resource group. This enables you to run cost reports for that
specific group, ensuring that the costs attributed to the "Sales" team are properly allocated.

4.1.2 Tagging Best Practices

● Automated Tagging: Automating the tagging process ensures that resources are
tagged consistently across the board. Many cloud automation tools, such as AWS
Lambda or AWS CloudFormation, allow you to apply tags automatically when new
resources are provisioned, reducing the risk of human error and ensuring every
resource is correctly tagged from the start.

● Key-Value Pairs: Use consistent key-value pairs across your resources. Common tags
include Tenant, Environment, Department, Project, and CostCenter. For example, a
resource in the production environment for a marketing department might have the
tags Environment: Production, Department: Marketing, and CostCenter: 12345.

● Centralized Cost Management: Once resources are tagged, you can use AWS Cost
Explorer or AWS Budgets to filter costs by tags. This allows you to generate detailed
reports that break down the costs per tenant or department, providing clear insights
into where resources are being consumed and where costs are being incurred.

4.2 Tenant-Specific Resource Quotas

To ensure that no single tenant or department exceeds their allocated resources and runs up
the bill, tenant-specific resource quotas are a critical strategy. These quotas can be applied at
the Kubernetes level, which directly controls how much compute, memory, or storage each
tenant can use within the shared cluster.

Distributed Learning and Broad Applications in Scientific Research 920

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Quotas can be enforced using Kubernetes ResourceQuotas at the namespace level. By setting
limits on resources such as CPU, memory, and persistent storage, organizations can control
usage and prevent any one tenant from consuming more than their fair share of resources.

4.2.1 Implementing Quotas in EKS

ResourceQuotas are applied at the namespace level. For example, you could set a CPU limit
of 10 CPUs and a memory limit of 40 GiB for a particular tenant's namespace. This will ensure
that all pods within that namespace respect these limits. If a pod exceeds the quota,
Kubernetes will prevent new pods from being scheduled until resource usage is brought back
into compliance.

4.2.2 Benefits of Tenant-Specific Quotas

● Ensuring Fairness: In multi-tenant environments, it’s important to ensure that each
tenant or team has access to the resources they need without competing for limited
cluster capacity. Resource quotas ensure that one tenant's excessive resource use
doesn’t negatively impact others.

● Preventing Overages: By setting clear boundaries on resource usage, quotas prevent
individual tenants from unintentionally driving up costs. For instance, if a tenant
exceeds their quota for CPU or memory, Kubernetes will either throttle their usage or
prevent them from deploying additional workloads.

● Clear Accountability: When each tenant has a defined quota, it becomes easier to
assign accountability for resource consumption and costs. If a tenant exceeds their
quota, they can be held responsible for any associated cost overruns.

4.3 Cost Attribution through Kubernetes Labels

While tagging resources in AWS provides an essential foundation for cost allocation, it doesn’t
directly apply to the workloads running within Kubernetes. For this, Kubernetes labels offer
a powerful way to link specific resources and workloads to cost centers.

4.3.1 Benefits of Cost Attribution with Labels

● Dynamic Attribution: Since labels can be added or modified dynamically, you can
easily adjust cost attribution as workloads shift between tenants, environments, or
projects.

● Granular Cost Breakdown: Kubernetes labels allow you to track costs with a high
degree of granularity. You can assign specific workloads, such as microservices or
pods, to different tenants, making it easy to break down costs by team or department.

● Integration with AWS Cost Explorer: By using the same key-value label format across
both AWS resources and Kubernetes workloads, you can integrate Kubernetes metrics
with AWS cost reporting tools for a unified view of your cluster costs.

Distributed Learning and Broad Applications in Scientific Research 921

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

4.3.2 Using Kubernetes Labels for Cost Attribution

Kubernetes labels are key-value pairs that can be attached to Kubernetes objects such as pods,
nodes, and services. By applying consistent labeling conventions, you can assign each pod or
service to a specific tenant, department, or project.

Consider a multi-tenant EKS environment where each tenant has workloads running in their
own namespaces. By labeling each pod with a label like tenant=<tenant-name>, you can easily
identify the cost attributable to each tenant by associating the label with cost allocation tools
like AWS Cost Explorer or using custom cost reporting tools.

4.4 Pod-Level and Namespace-Level Monitoring

In large-scale EKS environments, it is crucial to understand the costs at a more granular level
than just the cluster as a whole. Pod-level and namespace-level monitoring allow
organizations to break down cluster costs and better understand how resources are consumed
across the cluster.

4.4.1 Namespace-Level Monitoring

Namespace-level monitoring enables you to aggregate costs by tenant, department, or project.
By tracking costs at the namespace level, you can quickly compare resource usage across
tenants and make data-driven decisions about resource allocation. This can help identify
which tenants or departments are consuming the most resources and optimize cost
distribution across the organization.

4.4.2 Pod-Level Monitoring

Each pod in Kubernetes can have a different resource usage profile. Some pods may require
high CPU and memory, while others are relatively lightweight. By monitoring costs at the pod
level, you can gain deeper insights into how resources are allocated and used across different
workloads. This can help identify inefficiencies, underutilized resources, or areas where costs
could be reduced.

If one pod is consuming more memory than expected, it might be a sign of inefficient code or
excessive caching. Identifying these issues at the pod level allows you to take corrective action
quickly, preventing unnecessary cost overruns.

5. Best Practices for Cost Optimization

As organizations increasingly adopt Kubernetes for container orchestration, Amazon Elastic
Kubernetes Service (EKS) has become one of the most popular solutions for managing large-
scale containerized workloads. While EKS offers a host of benefits, including scalability,
reliability, and integration with AWS services, managing costs can quickly become a
challenge, especially in large clusters. To avoid unexpected expenses, it is essential to
implement cost optimization strategies. This guide will explore several best practices for

Distributed Learning and Broad Applications in Scientific Research 922

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

monitoring and optimizing cloud costs in Amazon EKS, with a focus on right-sizing nodes
and pods, leveraging Spot Instances, autoscaling, managing persistent storage costs, and
utilizing Reserved Instances and Savings Plans.

5.1 Spot Instances for Cost Efficiency

One of the most effective ways to reduce the cost of running EKS clusters is by using EC2 Spot
Instances. Spot Instances allow you to take advantage of unused EC2 capacity at a fraction of
the cost of On-Demand Instances. Spot Instances can be an excellent choice for workloads that
are flexible or fault-tolerant, such as batch processing, data analytics, or web applications with
variable traffic.

5.1.1 Leveraging EC2 Spot Instances in EKS

To integrate Spot Instances into your EKS clusters, you can configure the EKS node groups
to include Spot Instances alongside On-Demand Instances. This hybrid approach allows you
to balance cost savings with availability and performance. By using Amazon EC2 Auto
Scaling and Spot Instance interruption handling with EKS, you can ensure that your
workloads continue running seamlessly even when Spot Instances are interrupted.

It's crucial to design your workloads to tolerate interruptions when using Spot Instances. You
can use Pod Disruption Budgets (PDBs) to control how many pods can be disrupted at a
time, ensuring that your services continue running smoothly during Spot Instance
interruptions. Additionally, the use of Kubernetes StatefulSets and Persistent Volumes can
help ensure that your workloads are resilient to failures and interruptions.

5.2 Cost Optimization for Persistent Storage

Persistent storage is a critical component of many EKS workloads, but it can also be a
significant cost driver. Managing storage efficiently is key to optimizing cloud costs in an EKS
environment.

5.2.1 Use of EFS and S3

If your workloads require shared file storage, Amazon Elastic File System (EFS) may be a
more cost-effective option compared to EBS, especially for large-scale applications that
require shared access. Additionally, for workloads that deal with large amounts of data, using
Amazon S3 for object storage is often cheaper than maintaining persistent block storage.

By evaluating your storage needs and using the appropriate storage solutions, you can
significantly reduce the costs associated with persistent storage in your EKS environment.

5.2.2 Managing EBS Volumes

Most EKS clusters rely on Amazon Elastic Block Store (EBS) for persistent storage. However,
EBS can become expensive if volumes are not properly sized or if you forget to delete unused

Distributed Learning and Broad Applications in Scientific Research 923

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

volumes. Start by reviewing your existing EBS volumes regularly to ensure that they are
properly sized. You can use Amazon CloudWatch and AWS Cost Explorer to monitor EBS
volume usage and identify underutilized volumes that can be downsized or deleted.

Consider using EBS Snapshots to back up data in a cost-effective manner. Snapshots are
cheaper than keeping full volumes running continuously and can be restored quickly when
needed.

5.3 Autoscaling Strategies

Autoscaling is a powerful tool for optimizing the cost of running an EKS cluster. By
automatically adjusting the number of nodes and pods in response to traffic fluctuations,
autoscaling helps prevent both over-provisioning and under-provisioning of resources.

5.3.1 Node Autoscaling

On the node level, you can use Amazon EKS Cluster Autoscaler to automatically scale the
number of nodes in your cluster. The Cluster Autoscaler adjusts the number of EC2 instances
based on resource demands, adding more nodes when your pods require more resources and
removing nodes when they are underutilized. This helps to ensure that you are only paying
for the infrastructure you need at any given time.

A good autoscaling strategy requires careful configuration of the Cluster Autoscaler to ensure
that it scales your cluster in a cost-efficient way. Consider using smaller instances in
combination with larger instances to handle variable workloads, and monitor autoscaling
actions to ensure efficiency.

5.3.1 Pod Autoscaling

Kubernetes offers Horizontal Pod Autoscaling (HPA), which adjusts the number of pod
replicas based on resource utilization (such as CPU or memory usage). By automatically
scaling your pods in and out, you ensure that you're only using the resources you need at any
given time.

It’s essential to properly define the resource requests and limits for your pods to ensure the
HPA works efficiently. If pods are running under-resourced, the HPA may scale up
unnecessarily, leading to higher costs. On the other hand, if pods are over-resourced, you may
waste capacity. Monitoring the scaling behavior and adjusting thresholds as needed will help
you optimize costs.

5.4 Right-Sizing EKS Nodes & Pods

One of the most important steps in controlling costs is ensuring that the EKS nodes and pods
are properly sized for the workload they are running. Many organizations make the mistake
of over-provisioning resources to ensure availability, but this often leads to unused capacity,
which results in wasted money.

Distributed Learning and Broad Applications in Scientific Research 924

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

5.4.1 EKS Node Right-Sizing

To achieve the right balance between performance and cost, you must select instance types
that match your workload requirements. Larger instance types can provide more resources,
but they also cost more, and if you're not using all those resources, you're wasting money.
Start by analyzing your workloads to determine which instance types provide the best
performance per dollar spent.

AWS provides tools like the AWS Cost Explorer and CloudWatch Metrics to help you
monitor and understand usage patterns. This can give you insights into which EC2 instances
are over-provisioned. Additionally, make use of the EKS node utilization metrics to track the
CPU and memory usage of your nodes. This allows you to identify instances that might be
too large for your needs and reduce their size accordingly.

5.4.2 Pod Right-Sizing

Similarly, Kubernetes pods can be over-provisioned if you don't properly define resource
requests and limits for each pod. By default, Kubernetes will schedule pods on nodes without
considering resource efficiency, which may lead to unused capacity and higher costs. Ensure
that each pod has properly set resource requests and limits based on actual usage data.
Vertical Pod Autoscaling (VPA) can help adjust the CPU and memory requests and limits
based on real-time utilization, making sure resources are appropriately allocated.

5.5 Monitoring Reserved Instances & Savings Plans

For workloads with predictable usage patterns, AWS Reserved Instances (RIs) and Savings
Plans offer substantial discounts over On-Demand pricing. These options provide long-term
pricing models that can save you money if you commit to using AWS resources for a 1-year
or 3-year term.

5.5.1 Reserved Instances vs. Savings Plans

● Savings Plans, on the other hand, provide more flexibility by applying to any EC2
instance type, size, region, or operating system. This makes them ideal for more
dynamic workloads that may not fit neatly into the Reserved Instance model.

● Reserved Instances offer savings in exchange for a commitment to use specific EC2
instance types in specific regions. They provide a fixed discount compared to On-
Demand Instances and can be a great option for workloads with steady, predictable
resource requirements.

By analyzing your historical usage patterns and making the right commitment, you can
achieve significant savings on your EC2 costs.

6. Conclusion

Distributed Learning and Broad Applications in Scientific Research 925

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Managing cloud costs in large-scale Amazon EKS clusters requires a comprehensive and
proactive approach. Throughout this discussion, we’ve explored key strategies for monitoring
and allocating costs in such environments, from using native AWS tools like AWS Cost
Explorer and AWS Budgets to integrating third-party solutions like Kubecost. These tools
offer real-time insights into resource consumption and help identify inefficiencies or
unexpected spikes in cost. Leveraging cost allocation tags and Kubernetes resource requests
and limits is crucial for ensuring that resources are appropriately distributed and charged to
the correct teams or services.

Another critical strategy involves optimizing the use of Kubernetes autoscaling. By
configuring horizontal pod auto scalers and node auto scalers effectively, organizations can
ensure that they are scaling their workloads efficiently in response to traffic demands without
overspending on underutilized infrastructure. In addition, using spot instances and
considering Reserved Instances for specific workloads can provide significant cost savings
while maintaining the required availability and performance.

The emerging trends in cloud-native cost management highlight an increasing reliance on
machine learning and AI-driven solutions to predict usage patterns and optimize cloud
spending. As cloud providers continue to enhance their monitoring capabilities, organizations
will benefit from even more granular insights into how their workloads impact costs and
where savings can be made. Innovations such as serverless computing and managed
Kubernetes services will likely play an increasing role in simplifying cost management for
complex, multi-tenant environments.

Ultimately, the key takeaway is the importance of taking a proactive stance on cloud cost
monitoring. Large-scale environments, particularly those with multiple tenants or business
units, can easily experience cost overruns without careful oversight. By implementing
continuous monitoring, leveraging automated optimization tools, and setting clear budgetary
guidelines, organizations can keep cloud expenditures in check and ensure that their cloud-
native applications continue to provide value without unexpected financial surprises. In such
dynamic environments, a strategic and informed approach to cost management is not just a
best practice—it is essential for long-term success and sustainability.

7. References

1. Sikeridis, D., Papapanagiotou, I., Rimal, B. P., & Devetsikiotis, M. (2017). A Comparative
taxonomy and survey of public cloud infrastructure vendors. arXiv preprint arXiv:1710.01476.

2. Sayfan, G. (2018). Mastering Kubernetes: Master the art of container management by using
the power of Kubernetes. Packt Publishing Ltd.

Distributed Learning and Broad Applications in Scientific Research 926

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

3. Arundel, J., & Domingus, J. (2019). Cloud Native DevOps with Kubernetes: building,
deploying, and scaling modern applications in the Cloud. O'Reilly Media.

4. Chen, G. (2019). Modernizing Applications with Containers in Public Cloud. Amazon Web
Services.

5. Baier, J., & White, J. (2018). Getting Started with Kubernetes: Extend your containerization
strategy by orchestrating and managing large-scale container deployments. Packt Publishing
Ltd.

6. Menga, J. (2018). Docker on Amazon Web Services: Build, deploy, and manage your
container applications at scale. Packt Publishing Ltd.

7. Raju, C. V. N. (2015). Data Integration with Spatial Data Mining and Security Model in
Cloud Computing. International Journal of Advance Research in Computer Science and
Management Studies, 3(11), 272-279.

8. Li, Z., Zhang, H., O’Brien, L., Cai, R., & Flint, S. (2013). On evaluating commercial cloud
services: A systematic review. Journal of Systems and Software, 86(9), 2371-2393.

9. Martınez, P. J. C. (2011). A Middleware framework for selfadaptive large scale distributed
services (Doctoral dissertation, PhD thesis, Universitat Politecnica de Catalunya,
Departament d’Arquitectura dels Computadors, 2011.(Cited on pages 72, 78, 81, and 82.)).

10. Chacin Martínez, P. J. (2011). A Middleware framework for self-adaptive large scale
distributed services.

11. Wunder, S. (2005). Payments for environmental services: some nuts and bolts (Vol. 42, pp.
1-32). Bogor: Cifor.

12. Krautheim, F. J. (2010). Building trust into utility cloud computing. University of
Maryland, Baltimore County.

13. Duan, Y. C. (2014). Market research of commercial recommendation engines for online and
offline retail (Doctoral dissertation, Massachusetts Institute of Technology).

14. Gade, K. R. (2019). Data Migration Strategies for Large-Scale Projects in the Cloud for
Fintech. Innovative Computer Sciences Journal, 5(1).

15. Myllylä, S. (2015). Terrains of struggle: the Finnish forest industry cluster and corporate
community responsibility to Indigenous Peoples in Brazil (Doctoral dissertation, University
of Jyväskylä).

16. Boda, V. V. R., & Immaneni, J. (2019). Streamlining FinTech Operations: The Power of
SysOps and Smart Automation. Innovative Computer Sciences Journal, 5(1).

Distributed Learning and Broad Applications in Scientific Research 927

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

17. Nookala, G., Gade, K. R., Dulam, N., & Thumburu, S. K. R. (2019). End-to-End Encryption
in Enterprise Data Systems: Trends and Implementation Challenges. Innovative Computer
Sciences Journal, 5(1).

18. Komandla, V. Enhancing Security and Fraud Prevention in Fintech: Comprehensive
Strategies for Secure Online Account Opening.

19. Komandla, V. Transforming Financial Interactions: Best Practices for Mobile Banking App
Design and Functionality to Boost User Engagement and Satisfaction.

20. Gade, K. R. (2018). Real-Time Analytics: Challenges and Opportunities. Innovative
Computer Sciences Journal, 4(1).

21. Gade, K. R. (2017). Integrations: ETL vs. ELT: Comparative analysis and best practices.
Innovative Computer Sciences Journal, 3(1).

22. Katari, A. (2019). ETL for Real-Time Financial Analytics: Architectures and Challenges.
Innovative Computer Sciences Journal, 5(1).

23. Katari, A. (2019). Data Quality Management in Financial ETL Processes: Techniques and
Best Practices. Innovative Computer Sciences Journal, 5(1).

24. Muneer Ahmed Salamkar, and Karthik Allam. Architecting Data Pipelines: Best Practices
for Designing Resilient, Scalable, and Efficient Data Pipelines. Distributed Learning and Broad
Applications in Scientific Research, vol. 5, Jan. 2019

25. Muneer Ahmed Salamkar. ETL Vs ELT: A Comprehensive Exploration of Both
Methodologies, Including Real-World Applications and Trade-Offs. Distributed Learning and
Broad Applications in Scientific Research, vol. 5, Mar. 2019

26. Naresh Dulam, et al. “Kubernetes Operators: Automating Database Management in Big
Data Systems”. Distributed Learning and Broad Applications in Scientific Research, vol. 5,
Jan. 2019

27. Naresh Dulam, and Karthik Allam. “Snowflake Innovations: Expanding Beyond Data
Warehousing ”. Distributed Learning and Broad Applications in Scientific Research, vol. 5,
Apr. 2019

Distributed Learning and Broad Applications in Scientific Research 928

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

28. Naresh Dulam. The Shift to Cloud-Native Data Analytics: AWS, Azure, and Google Cloud
Discussing the Growing Trend of Cloud-Native Big Data Processing Solutions. Distributed
Learning and Broad Applications in Scientific Research, vol. 1, Feb. 2015, pp. 28-48

29. Sarbaree Mishra. A Distributed Training Approach to Scale Deep Learning to Massive
Datasets. Distributed Learning and Broad Applications in Scientific Research, vol. 5, Jan. 2019

30. Sarbaree Mishra, et al. Training Models for the Enterprise - A Privacy Preserving
Approach. Distributed Learning and Broad Applications in Scientific Research, vol. 5, Mar.
2019

