
Distributed Learning and Broad Applications in Scientific Research 1333

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

Evaluating Kubernetes Pod Scaling Techniques for Event-Driven
Applications
Babulal Shaik, Cloud Solutions Architect at Amazon Web Services, USA

Abstract:

As cloud-native architectures continue to gain momentum, Kubernetes has become a
cornerstone for managing containerized applications, offering flexibility and scalability.
Among the various types of workloads, event-driven applications, which respond to
asynchronous events, present unique challenges due to their dynamic and unpredictable
nature. These applications require high elasticity to efficiently manage fluctuating workloads,
scaling up during bursts of activity and scaling down during periods of low demand.
Kubernetes provides a range of pod scaling techniques, two of the most prominent being
Horizontal Pod Autoscaling (HPA) & custom metrics-based scaling. HPA, which
automatically adjusts the number of pods based on resource usage such as CPU and memory,
is well-suited for applications with predictable scaling needs. However, event-driven systems
often experience irregular load patterns, making HPA’s reliance on standard metrics less ideal
for every scenario. In these cases, custom metrics-based scaling offers a more precise solution
by allowing users to scale based on specific metrics such as event queue length or application-
specific performance indicators, ensuring that the system can handle workloads more
efficiently. Amazon Elastic Kubernetes Service (EKS), which provides a fully managed
Kubernetes environment, supports both of these scaling methods, enabling users to leverage
the full capabilities of Kubernetes for event-driven workloads. The choice between HPA and
custom metrics-based scaling depends on the specific requirements of the event-driven
application, including factors such as the type of events processed, the frequency of events,
and the need for rapid scaling. HPA offers simplicity and ease of use, but its reliance on basic
resource metrics can lead to under or over-scaling in more complex use cases. On the other
hand, custom metrics scaling provides more granular control but requires additional
configuration and monitoring. This paper evaluates the strengths & limitations of these pod
scaling techniques within EKS for event-driven applications, giving practical insights into
which method is best suited for different workloads.

Keywords: Kubernetes, Pod Scaling, Horizontal Pod Autoscaling, Custom Metrics, Event-
Driven Applications, EKS, Elasticity, Cloud-Native, Autoscaling, Kubernetes Scaling,
Container Orchestration, Dynamic Scaling, Cloud Infrastructure, Kubernetes Clusters, Event-
Driven Architecture, Resource Optimization, Container Management, EKS Autoscaling,
Application Performance, Cloud-Native Scaling, Kubernetes Workload Management.

1. Introduction

1.1 The Growth of Cloud-Native Architectures and Kubernetes

Distributed Learning and Broad Applications in Scientific Research 1334

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

In recent years, cloud-native architectures have transformed how organizations design,
deploy, and scale applications. With the rise of microservices, containerization, and
Kubernetes as a container orchestration platform, organizations are increasingly leveraging
these technologies to manage dynamic, scalable systems. Kubernetes, in particular, has
become the de facto standard for managing containerized applications in cloud environments,
offering numerous features to automate tasks such as deployment, scaling, and load
balancing.

The ability to scale applications efficiently is one of Kubernetes' most compelling features. In
a cloud-native environment, Kubernetes provides auto-scaling mechanisms that allow
applications to adapt to fluctuating demands. For organizations running event-driven
applications, these scaling capabilities are particularly valuable, as they need to handle
unpredictable and often volatile workloads. Event-driven architectures, where components
respond to discrete events, have grown in popularity as they offer agility, responsiveness, and
scalability.

1.2 Event-Driven Applications and Their Elasticity Needs

Event-driven applications are designed to respond to events that occur asynchronously, often
coming from various sources such as external APIs, user requests, sensor data, or system
notifications. These events trigger specific actions within the application, which may involve
processing, storing, or passing the data along to other services. One of the challenges with
event-driven architectures is their inherently unpredictable nature. Unlike traditional,
monolithic systems that handle a steady flow of requests, event-driven systems must be
capable of responding to bursts of activity that may occur with little or no warning.

This unpredictability places high demands on the underlying infrastructure. Event-driven
applications require rapid scaling to handle sudden spikes in events & to release resources
when activity decreases. If scaling mechanisms are too slow or insufficient, the application
might struggle to keep up with demand, leading to delayed processing, system instability, or
even failures. Conversely, if resources are over-provisioned, it can result in unnecessary costs.
Achieving the right balance in scalability is essential for maintaining both performance and
cost-efficiency.

1.3 Pod Scaling in Kubernetes for Event-Driven Applications

Kubernetes offers a variety of mechanisms to scale applications dynamically. The Horizontal
Pod Autoscaler (HPA) is one of the most commonly used features, adjusting the number of
pods based on CPU and memory usage. However, for event-driven applications, more
advanced scaling mechanisms may be necessary to handle the unique demands of fluctuating
workloads. Custom metrics, for instance, can provide more granular control by scaling based
on application-specific metrics such as the length of the event queue or the rate of incoming
events.

For event-driven applications running on Amazon Elastic Kubernetes Service (EKS), these
scaling techniques are crucial in ensuring the application’s responsiveness and resource
optimization. As AWS continues to evolve its Kubernetes offerings, fine-tuning these scaling

Distributed Learning and Broad Applications in Scientific Research 1335

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

mechanisms to meet the needs of event-driven systems will be key to unlocking the full
potential of Kubernetes in the cloud-native landscape.

2. Kubernetes Scaling Basics

Kubernetes, the open-source container orchestration platform, provides powerful features for
scaling applications and managing workloads. Pod scaling is one of the core functionalities
within Kubernetes that helps applications handle varying loads efficiently, ensuring optimal
performance and resource utilization. In this section, we’ll explore the fundamentals of
Kubernetes scaling, focusing on techniques like Horizontal Pod Autoscaling (HPA) and the
use of custom metrics. We will also examine how these scaling methods are suitable for event-
driven applications, particularly in Amazon Elastic Kubernetes Service (EKS), which is a
managed Kubernetes service on AWS.

2.1 Understanding Pod Scaling in Kubernetes

Pod scaling in Kubernetes involves adjusting the number of pod replicas to meet the varying
demands of an application. The primary goal is to maintain high availability and performance
while minimizing resource consumption. Kubernetes supports both manual and automatic
scaling, with automatic scaling mechanisms offering dynamic adjustments based on resource
utilization.

2.1.1 Limitations of HPA

While HPA is highly effective for general workloads, it may not be sufficient for all use cases,
particularly event-driven applications that require more fine-grained control over scaling
behavior. For example, in event-driven systems, traffic spikes can be highly unpredictable,
and traditional metrics like CPU utilization may not provide enough context to scale pods
efficiently. Additionally, HPA only works with a limited set of resource metrics & does not
automatically consider other factors like application-specific event counts or external message
queue metrics.

2.1.2 Horizontal Pod Autoscaling (HPA)

Horizontal Pod Autoscaling (HPA) is a widely-used scaling technique in Kubernetes that
automatically adjusts the number of pods in a deployment based on observed metrics. These
metrics are typically related to resource consumption, such as CPU and memory usage, or
custom metrics like request rates or queue lengths. The HPA controller continuously monitors
these metrics & makes scaling decisions by comparing the current value with the defined
target.

The process works by setting the desired metric value (e.g., CPU utilization at 80%) for the
application. When the metric exceeds the threshold, HPA increases the number of pods to
distribute the load more effectively. Conversely, when the metric falls below the target, it
reduces the number of pods to save resources.

2.2 Custom Metrics & Scaling in Kubernetes

Distributed Learning and Broad Applications in Scientific Research 1336

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

For more advanced scaling needs, Kubernetes allows the use of custom metrics to scale pods
based on application-specific data. Custom metrics are any metrics beyond the default
resource utilization metrics, such as the number of events in a queue, request latency, or
application-specific metrics (e.g., API request count).

2.2.1 Benefits of Custom Metrics

Using custom metrics for scaling offers several advantages, especially for event-driven
applications:

● Event-based Scaling: Custom metrics allow you to scale based on factors like message
queue lengths or event processing rates, which are key characteristics in event-driven
architectures.

● Higher Flexibility: Custom metrics enable a tailored scaling strategy that reflects the
actual behavior and needs of the application, unlike CPU or memory-based scaling.

● Better Resource Efficiency: By using metrics directly tied to application load, you can
avoid unnecessary pod scaling when resources like CPU or memory remain
underutilized, even when the event-driven workload fluctuates.

2.2.2 Custom Metrics Adapter

To use custom metrics in Kubernetes, a custom metrics adapter is required. This component
integrates Kubernetes with external metric providers like Prometheus, AWS CloudWatch, or
other monitoring tools that can expose application-specific metrics. Once configured, the
custom metrics adapter allows Kubernetes to make scaling decisions based on these external
metrics, thus enabling more granular and accurate scaling in event-driven scenarios.

2.2.3 Example of Custom Metric Scaling for Event-Driven Applications

Consider an event-driven application that processes messages from an Amazon SQS queue.
In such a case, a custom metric could be the number of messages in the queue or the rate at
which messages are being processed. Scaling based on these metrics ensures that the
application adjusts its capacity in real-time, effectively handling traffic surges without over-
provisioning resources during low-demand periods.

2.3 Advanced Scaling Techniques

While HPA and custom metrics provide the foundation for scaling Kubernetes applications,
more advanced scaling techniques can be used to further enhance the responsiveness and
efficiency of scaling, particularly in high-velocity environments like event-driven
applications.

2.3.1 Vertical Pod Autoscaling (VPA)

Vertical Pod Autoscaling (VPA) is another technique that adjusts the CPU and memory
requests of a pod instead of adding or removing pods. This is especially useful for workloads
that are sensitive to resource limits, such as those with variable memory or CPU demands.
While not as commonly used for event-driven applications, VPA can complement HPA and

Distributed Learning and Broad Applications in Scientific Research 1337

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

custom metric scaling when pods need more resources as events increase, without necessarily
requiring additional replicas.

2.3.2 Cluster Autoscaler

The Kubernetes Cluster Autoscaler is an additional tool that works at the infrastructure level
to scale the nodes in the cluster, ensuring that there are enough resources (such as CPU and
memory) to handle the required number of pods. Cluster Autoscaler is particularly useful in
dynamic environments where pod scaling demands change rapidly, and the existing nodes
might not be sufficient to accommodate the new pods.

When scaling up, the Cluster Autoscaler provisions new nodes to the cluster to accommodate
additional pods. Conversely, when pods are scaled down, the Cluster Autoscaler can remove
unused nodes, optimizing resource utilization and cost.

2.4 Scaling for Event-Driven Applications in EKS

Amazon Elastic Kubernetes Service (EKS) is a managed service that simplifies the
deployment, management, & scaling of Kubernetes clusters on AWS. When it comes to event-
driven applications, EKS provides several features that integrate seamlessly with Kubernetes
scaling techniques, enabling high elasticity and responsiveness.

Event-driven applications often face challenges in scaling, as their workloads can be highly
bursty and unpredictable. EKS supports native integration with AWS services like SQS,
Kinesis, and Lambda, which can expose metrics that are critical for event-driven scaling. By
leveraging EKS with custom metrics and integrating with AWS monitoring tools such as
CloudWatch, organizations can implement efficient scaling strategies that respond directly to
the nature of the workload.

3. Event-Driven Applications & Their Unique Scaling Needs

Event-driven applications are designed to respond to external events or triggers, such as user
actions, system events, or messages from other services. These applications are often
characterized by their high levels of concurrency and variable workloads. As a result, scaling
such applications can be more challenging compared to traditional request-response systems.
Kubernetes, with its ability to manage containerized applications in a scalable and efficient
way, offers multiple techniques for scaling pods, which is essential for meeting the
unpredictable demand of event-driven applications.

3.1 Understanding Event-Driven Architectures

Event-driven architectures (EDA) are centered around the idea that services or components
communicate by emitting and consuming events. These events can be anything from a new
user registering on a platform to a message being published to a message queue. This
architecture is particularly beneficial for applications that need to scale dynamically in
response to varying workloads, as it allows components to work asynchronously and
independently.

Distributed Learning and Broad Applications in Scientific Research 1338

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

3.1.1 Challenges in Scaling Event-Driven Applications

While event-driven applications provide numerous benefits, scaling them effectively presents
unique challenges:

● Handling Variable Workloads: The volume of events an application receives can vary
significantly over time. This variability makes it difficult to predict the number of
resources needed to maintain performance. Scaling based on a fixed number of
replicas may not always be efficient, as it might either under-provision resources
during traffic surges or over-provision them during quiet periods.

● Maintaining Low Latency: Event-driven applications often require low-latency
processing to ensure real-time responses to events. Delays in event processing due to
insufficient scaling can lead to a poor user experience or missed opportunities.

● Resource Utilization: Efficient use of resources is a key consideration in scaling event-
driven applications. Inefficient scaling could lead to underutilized resources or service
outages during traffic peaks. Managing resource utilization without over-provisioning
requires careful monitoring and scaling adjustments.

3.1.2 Characteristics of Event-Driven Applications

Event-driven applications exhibit several distinct characteristics that make them suitable for
cloud-native environments like Kubernetes:

● Asynchronous Communication: Components in event-driven applications do not
block or wait for a response from other components. Instead, they produce events that
are processed asynchronously by other components. This non-blocking behavior is
key to ensuring that the application can handle large volumes of events in parallel.

● Loose Coupling: The producer and consumer of events in an event-driven system are
often decoupled, meaning that changes to one component do not directly affect the
other. This decoupling allows for better scalability, as components can scale
independently of each other.

● Elasticity & Scalability: Event-driven systems must be able to scale up or down
quickly in response to the fluctuating number of incoming events. This elasticity
ensures that the system can handle bursts of traffic without over-provisioning
resources during periods of low demand.

3.1.3 Importance of Auto-Scaling in Event-Driven Applications

Auto-scaling is a crucial element in managing the dynamic nature of event-driven
applications. Kubernetes offers several auto-scaling options that allow for the automatic
adjustment of resources based on demand. These scaling mechanisms are particularly
important in ensuring that event-driven systems remain responsive and cost-effective.

● Horizontal Pod Autoscaler (HPA): HPA scales pods based on CPU utilization or
memory usage, adjusting the number of replicas as needed. While HPA is effective for

Distributed Learning and Broad Applications in Scientific Research 1339

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

many applications, it may not be the best solution for event-driven workloads that do
not consistently map to CPU or memory usage.

● Custom Metrics & Scalers: For event-driven applications that rely on different
metrics, custom metrics can be utilized to scale pods based on specific event-driven
triggers. This allows for more granular control over scaling based on the number of
incoming messages, event queue lengths, or any other application-specific metric.

3.2 Kubernetes & Event-Driven Scaling Techniques

Kubernetes offers several native tools to help scale event-driven applications. However,
understanding the intricacies of these tools is vital in determining which ones are most
suitable for a given use case.

3.2.1 Horizontal Pod Autoscaler (HPA)

The Horizontal Pod Autoscaler is one of the most common and easy-to-implement scaling
techniques in Kubernetes. It automatically adjusts the number of pods in a deployment or
replica set based on observed CPU utilization or memory usage. However, when it comes to
event-driven applications, CPU and memory consumption may not always correlate with the
number of events being processed.

Thus, while HPA provides a simple and effective way to scale resources based on resource
consumption, it may not be sufficient for all event-driven applications. For these use cases,
combining HPA with custom metrics can offer a more appropriate solution.

3.2.2 Event-Driven Scaling via AWS Lambda

In Amazon EKS, a serverless solution like AWS Lambda can be combined with Kubernetes
for event-driven scaling. AWS Lambda can scale automatically in response to events like S3
uploads or messages from an SNS topic. For event-driven applications hosted in Kubernetes,
Lambda can offload the processing of some events, allowing Kubernetes to focus on scaling
the application pods based on the remaining demand.

● Scalability: Lambda can quickly scale out based on the number of incoming events,
without requiring manual intervention or complex scaling configurations.

● Cost Efficiency: Since Lambda only runs when triggered by an event, it can be a cost-
effective solution for workloads with unpredictable spikes in traffic.

3.2.3 Custom Metrics Autoscaler (CMA)

To address the limitations of HPA, Kubernetes also supports custom metrics autoscaling,
which allows pods to scale based on application-specific metrics. These metrics could include
the number of messages in a queue, the rate of event arrival, or any other measurable data
that reflects the workload of the event-driven application.

● Implementation: Custom metrics can be implemented through Kubernetes' Metrics
Server, which collects metrics from various sources, including custom-defined metrics.

Distributed Learning and Broad Applications in Scientific Research 1340

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

Prometheus is often used in conjunction with custom metrics to collect and store these
metrics before sending them to the Kubernetes API server for scaling decisions.

● Benefits: By scaling based on custom metrics, Kubernetes can adapt more dynamically
to the fluctuating workloads common in event-driven applications. This results in
more efficient use of resources and improved system performance during peak
demand.

3.3 Integration with Kubernetes Scaling Techniques

While Kubernetes provides several options for scaling event-driven applications, integrating
these techniques with other cloud-native tools can further enhance the overall scalability and
efficiency of the system.

3.3.1 Combining Horizontal & Vertical Scaling

In some cases, event-driven applications may require not just horizontal scaling (increasing
or decreasing the number of pods), but also vertical scaling (adjusting the resources allocated
to each pod). For example, if a particular event is resource-intensive, vertical scaling might
help ensure that individual pods have enough resources to handle the load.

● Vertical Pod Autoscaling: This feature of Kubernetes adjusts the CPU and memory
limits of pods based on usage, helping ensure that each pod has enough resources to
process events without over-provisioning.

● Horizontal Pod Autoscaling: In combination with vertical scaling, HPA can be used
to scale the number of pods in response to traffic spikes. This combination allows
Kubernetes to manage both resource allocation and pod count, ensuring optimal
performance.

3.3.2 Event-Driven Architecture with Kubernetes

Integrating Kubernetes with event-driven architectures can involve leveraging cloud-native
messaging systems such as Kafka, NATS, or RabbitMQ. These systems are often used in event-
driven environments to handle message queues and pub/sub patterns, which can trigger
scaling actions in Kubernetes.

● Elasticity: The ability to scale event-driven applications in Kubernetes is often closely
tied to the message queue or event bus that is handling the events. As the number of
events in the queue increases, Kubernetes can scale pods to process them. Once the
queue empties, Kubernetes can scale down to conserve resources.

● Scalability: Integrating Kubernetes with these event-driven systems ensures that the
system scales elastically in response to varying workloads, providing the necessary
resources only when demand increases.

3.4 Best Practices for Scaling Event-Driven Applications

Distributed Learning and Broad Applications in Scientific Research 1341

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

Scaling event-driven applications requires careful consideration of multiple factors, including
application design, traffic patterns, and infrastructure setup. Below are some best practices to
consider when scaling these applications in Kubernetes.

3.4.1 Use Event Queues for Load Distribution

Event queues play a critical role in event-driven systems by buffering incoming events before
they are processed. Implementing an event queue ensures that events are not lost during
periods of high demand & can be processed in an orderly fashion. Kubernetes can then scale
based on the length of the queue, ensuring that processing remains efficient without
overwhelming resources.

● Messaging Systems: Tools like Kafka and RabbitMQ are often used to manage event
queues, and integrating these systems with Kubernetes allows for effective scaling of
pods.

● Load Balancing: Load balancing between pods ensures that events are evenly
distributed, preventing bottlenecks or overloading specific pods.

3.4.2 Monitor & Adjust Scaling Parameters

While Kubernetes provides automated scaling, continuous monitoring is essential to ensure
that the scaling mechanisms are functioning optimally. Metrics such as queue length, event
processing time, and pod resource usage should be monitored regularly to adjust scaling
parameters as needed.

● Proactive Scaling: Setting up proactive alerts for high resource utilization or event
processing delays allows teams to intervene before issues arise.

● Fine-Tuning: Regularly fine-tuning custom metrics and scaling configurations
ensures that Kubernetes is accurately responding to changes in workload patterns.

By understanding the unique scaling needs of event-driven applications and leveraging the
right Kubernetes scaling techniques, organizations can ensure that their systems remain
responsive, efficient, and cost-effective.

4. Horizontal Pod Autoscaling (HPA)

Horizontal Pod Autoscaling (HPA) is a feature in Kubernetes that automatically adjusts the
number of pods in a deployment or replica set based on observed CPU utilization or other
select metrics. For event-driven applications, HPA is an essential tool that can help maintain
application performance while ensuring resource efficiency. Event-driven applications often
experience dynamic workloads due to the nature of their traffic, making it crucial to scale
efficiently to handle sudden spikes and minimize resource wastage during periods of
inactivity. This section evaluates the suitability of HPA for event-driven applications, focusing
on its setup, limitations, and best practices for achieving high elasticity in Amazon EKS
(Elastic Kubernetes Service).

4.1. Overview of Horizontal Pod Autoscaling

Distributed Learning and Broad Applications in Scientific Research 1342

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

Horizontal Pod Autoscaling (HPA) allows Kubernetes to automatically scale the number of
pod replicas in response to real-time application demand. It is primarily based on the
utilization of CPU or memory, but more recently, HPA has expanded to support custom
metrics. These metrics enable more sophisticated scaling strategies, which are essential for
event-driven workloads that may not fit into traditional resource usage patterns.

4.1.1. How HPA Works

HPA uses metrics from either built-in resources (like CPU or memory usage) or custom
metrics that are exposed by applications or external monitoring tools. The primary function
of HPA is to evaluate these metrics at regular intervals, and based on a defined target value
(e.g., CPU usage target), it adjusts the number of replicas in a deployment. For event-driven
applications, where the traffic pattern is unpredictable, this reactive scaling mechanism
ensures that pods are scaled in and out as needed without manual intervention.

For example, if an application’s CPU usage spikes due to a burst of incoming events, HPA can
scale the deployment by increasing the number of pods to handle the load, thereby preventing
potential bottlenecks and ensuring that the application remains responsive.

4.1.2. HPA in EKS: A Case Study

Amazon EKS (Elastic Kubernetes Service) simplifies the deployment of Kubernetes clusters in
AWS, and leveraging HPA in EKS is a straightforward process. With built-in integrations for
AWS CloudWatch, EKS can pull custom metrics from CloudWatch, allowing HPA to scale
based on application-specific data, rather than relying solely on CPU or memory usage.

Consider a scenario where an event-driven application processes messages from a queue.
Using CloudWatch metrics for queue length, EKS can trigger scaling events to accommodate
bursts of incoming messages, providing elasticity that traditional CPU-based scaling would
not achieve. This makes HPA particularly useful for workloads that are irregular, like those
in event-driven architectures.

4.2. Configuring HPA for Event-Driven Applications

Setting up HPA for event-driven applications in EKS requires a few considerations. The
configuration process is fairly simple, but fine-tuning it to ensure the right scaling behavior
under variable workloads is key. There are several steps to follow for configuring HPA:

4.2.1. Setting Up Resource Requests & Limits

To enable HPA to function correctly, the application pods need to have defined resource
requests and limits for CPU & memory. This ensures that Kubernetes has accurate data to
assess whether a pod needs scaling.

For event-driven applications, resource limits should be defined based on expected traffic
patterns. For instance, if the system experiences periods of high load followed by downtime,
setting realistic CPU and memory requests ensures that HPA can scale the pods appropriately,

Distributed Learning and Broad Applications in Scientific Research 1343

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

allowing the application to remain efficient during low-traffic times and responsive during
high-traffic periods.

4.2.2. Scaling Criteria & Scaling Thresholds

You might scale based on resource utilization thresholds, like 70% CPU utilization. However,
for event-driven applications, scaling might depend on non-resource metrics such as request
latency, queue length, or number of incoming events. Defining the right threshold is critical
to achieving smooth scaling.

If an event-driven application starts experiencing delays due to message backlogs, the custom
metric (e.g., queue length) could trigger an increase in pod replicas to handle the extra load,
while ensuring that the system remains responsive.

4.2.3. Leveraging Custom Metrics for More Granular Scaling

Custom metrics can significantly enhance the scalability of event-driven applications,
especially in use cases like message queue processing or data streaming, where CPU or
memory usage alone may not reflect the application’s actual load. For instance, queue length
or event processing time can be much more indicative of system load than basic CPU
utilization.

AWS CloudWatch and the Kubernetes Metrics Server allow for the integration of custom
metrics with HPA in EKS. Setting up these metrics involves exposing them from your
application or using AWS Lambda functions to collect and forward the relevant data, allowing
for more refined scaling decisions.

4.3. Challenges & Limitations of HPA in Event-Driven Applications

While HPA is a powerful tool for scaling Kubernetes clusters, event-driven applications face
unique challenges that can make HPA less effective in certain situations. Event-driven
workloads often have unpredictable patterns, which can lead to sudden bursts of load that
HPA may struggle to manage effectively.

4.3.1. Risk of Over-Scaling or Under-Scaling

When dealing with highly dynamic workloads, HPA might scale too quickly, resulting in
over-provisioning resources or scaling too slowly, leading to under-provisioning. For event-
driven applications, where load may fluctuate rapidly, such as during event bursts or idle
periods, tuning the scaling thresholds is critical.

Ensuring that HPA settings align with the application’s behavior is key to avoiding inefficient
resource usage. This might involve adjusting the thresholds or using additional techniques
like predictive scaling to prepare for upcoming demand peaks.

4.3.2. Delayed Scaling Response

Distributed Learning and Broad Applications in Scientific Research 1344

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

HPA typically scales pods based on a metric’s average value over a specified period, such as
30 seconds. For event-driven workloads, such as processing messages from a queue, sudden
bursts of events may require immediate scaling. The delay in HPA’s reaction time can result
in resource bottlenecks or downtime during periods of high load, which is not ideal for
latency-sensitive applications.

To mitigate this, configuring shorter evaluation intervals or using more responsive custom
metrics can help, but there will always be some degree of delay inherent in any autoscaling
system.

4.4. Best Practices for Using HPA with Event-Driven Applications

Although HPA has some limitations for event-driven applications, following best practices
can help maximize its effectiveness.

4.4.1. Using Fine-Grained Metrics

For event-driven applications, it is essential to use fine-grained, application-specific metrics
rather than relying solely on CPU and memory utilization. Metrics such as queue depth,
processing time per event, or rate of incoming requests can provide better indicators of load.

AWS CloudWatch can be used to collect and send custom metrics from the application to
Kubernetes, which can then be used by HPA to scale the system based on real-time demand.

4.4.2. Testing & Monitoring Scaling Behavior

Testing and continuous monitoring are essential when using HPA in production
environments, particularly for event-driven applications where load can be unpredictable.
Tools like Prometheus & Grafana are invaluable for visualizing HPA behavior and fine-tuning
scaling thresholds to ensure that pods are scaled optimally based on application demand.

Regular load testing and simulation of high-event scenarios can help refine HPA settings,
ensuring that the system remains responsive and resource-efficient during both normal and
peak periods.

4.4.3. Combining HPA with Other Scaling Mechanisms

While HPA is an excellent tool for dynamic scaling based on current demand, it is often not
sufficient on its own for event-driven applications. Combining HPA with other scaling
techniques, such as Cluster Autoscaler or predictive scaling, can provide a more
comprehensive solution. Cluster Autoscaler adjusts the size of the cluster itself, while
predictive scaling anticipates future workloads based on past trends.

5. Custom Metrics for Event-Driven Scaling

When designing and scaling event-driven applications on Kubernetes, it is essential to
consider the unique demands of handling unpredictable and bursty workloads. Unlike

Distributed Learning and Broad Applications in Scientific Research 1345

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

traditional applications, where traffic patterns are relatively stable, event-driven applications
often experience irregular spikes due to various external triggers, such as user requests, sensor
data, or system events. Kubernetes provides multiple pod scaling techniques to accommodate
these needs, & custom metrics for autoscaling are particularly effective in these scenarios.

Custom metrics allow Kubernetes to scale pods based on specific metrics that are tailored to
an application’s unique requirements. By using these custom metrics, Kubernetes can respond
to the dynamic nature of event-driven workloads, scaling up resources in real-time when
demand increases and scaling down during idle periods. In Amazon EKS (Elastic Kubernetes
Service), which simplifies Kubernetes deployment and management, custom metrics play a
pivotal role in achieving the desired elasticity for event-driven applications.

5.1. Overview of Custom Metrics for Autoscaling

Custom metrics are application-specific data points that reflect the internal state of an event-
driven system. They can represent anything from the number of incoming events to message
queue length or request latency. Custom metrics can be easily integrated into Kubernetes via
the Horizontal Pod Autoscaler (HPA) and used to trigger scaling actions based on the
application's real-time needs.

5.1.1. How Custom Metrics Enhance Elasticity

Elasticity refers to the ability of a system to automatically adjust to changes in load. In event-
driven applications, elasticity is key to ensuring responsiveness while maintaining cost-
efficiency. Custom metrics improve elasticity by providing a real-time understanding of the
system’s behavior beyond basic resource usage. For example, by measuring the event
processing rate or queue backlog, custom metrics can guide the HPA to scale pods as needed,
ensuring that the system remains responsive even under heavy load.

5.1.2. Importance of Custom Metrics in Event-Driven Applications

Event-driven applications are often tasked with handling sudden, unpredictable loads.
Relying solely on default Kubernetes metrics such as CPU utilization or memory usage may
not always reflect the application’s actual performance needs. For example, a sudden influx
of messages in a queue may indicate the need to scale the system, even though the CPU &
memory usage may remain relatively constant. Custom metrics allow Kubernetes to better
understand these nuances and trigger more precise scaling actions. This reduces over-
provisioning and under-provisioning, ensuring that resources are allocated optimally and
that the application can handle surges effectively.

5.2. Implementing Custom Metrics for Event-Driven Scaling in EKS

Amazon EKS offers robust support for integrating custom metrics into Kubernetes clusters.
By leveraging AWS CloudWatch, Kubernetes metrics server, and custom adapters, you can
create a scalable and responsive event-driven system. This section will discuss the key
components required to implement custom metrics for event-driven scaling in EKS.

5.2.1. Integration of CloudWatch Metrics with Kubernetes

Distributed Learning and Broad Applications in Scientific Research 1346

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

AWS CloudWatch provides a powerful monitoring tool for gathering metrics and logs. By
integrating CloudWatch with Kubernetes, you can create custom metrics based on
application-specific parameters, such as message queue depth or event rate. These metrics can
be exposed to the Kubernetes Horizontal Pod Autoscaler (HPA), enabling the system to scale
automatically based on real-time application needs. For instance, if the number of events
waiting in a queue surpasses a certain threshold, CloudWatch can trigger an HPA scale-up
event, launching additional pods to process the load.

5.2.2. Horizontal Pod Autoscaler (HPA) Integration

Once custom metrics are available, integrating them with the Horizontal Pod Autoscaler
(HPA) is a critical step. HPA in Kubernetes can scale pods based on multiple criteria,
including custom metrics. By configuring HPA to monitor custom metrics (such as message
queue length or event arrival rate), you can automatically scale the number of pods up or
down in response to changes in workload intensity. The HPA ensures that your system adapts
dynamically to varying event loads, enabling cost-effective and responsive scaling for event-
driven applications.

5.2.3. Use of Kubernetes Metrics Server for Custom Metrics

The Kubernetes Metrics Server collects resource utilization data (like CPU and memory usage)
for each pod and node. However, for event-driven applications, you may need additional
custom metrics. Kubernetes supports this need through the use of the Kubernetes custom
metrics API. The custom metrics API enables the aggregation of application-specific data,
such as request counts or queue length, which can then be used for autoscaling. By setting up
the Metrics Server to pull data from these custom sources, Kubernetes can be tuned to respond
to metrics that directly reflect the system’s state.

5.3. Scaling Strategies Using Custom Metrics

Scaling event-driven applications requires understanding the various strategies and
configurations that can be used in conjunction with custom metrics to ensure efficient resource
management.

5.3.1. Queue Length-Based Scaling

Another common approach for event-driven scaling is queue length-based scaling. In systems
where events are placed in a message queue before being processed (such as with AWS SQS
or Kafka), monitoring the length of the queue can serve as a reliable metric for scaling
decisions. When the queue length grows too large, indicating a backlog, custom metrics can
trigger the scaling of additional pods to catch up on the processing. This approach is
particularly useful when event processing time is inconsistent, and pod scaling is required to
ensure timely event handling.

5.3.2. Event Rate-Based Scaling

In event-driven systems, the number of incoming events is often the best indicator of required
scaling. By monitoring the event rate and using it as a custom metric, you can trigger pod

Distributed Learning and Broad Applications in Scientific Research 1347

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

scaling based on the rate of incoming events. For instance, if the event rate exceeds a
predefined threshold, the system can automatically scale up by launching more pods to
process the events. Conversely, when the event rate drops, the system can scale down,
minimizing costs and resource waste.

5.4. Benefits & Challenges of Custom Metrics for Event-Driven Scaling

While custom metrics provide powerful scalability options for event-driven applications,
there are certain benefits and challenges to consider when implementing them.

5.4.1. Benefits of Custom Metrics for Event-Driven Scaling

The primary benefit of using custom metrics for autoscaling is the improved precision in
scaling decisions. Event-driven applications require a level of responsiveness that cannot
always be captured by standard CPU or memory metrics. Custom metrics provide a deeper
understanding of the system’s behavior, ensuring that scaling decisions are based on the
actual workload rather than resource usage. Additionally, custom metrics help to prevent
under-provisioning and over-provisioning of resources, which improves both system
efficiency & cost management.

5.4.2. Latency in Scaling Decisions

Another potential challenge with custom metrics is the inherent latency in collecting and
processing these metrics. Even though custom metrics provide more accurate scaling triggers,
the delay in metric aggregation and evaluation may lead to slower scaling responses in highly
dynamic environments. In event-driven applications with frequent bursts of traffic, this
latency could lead to delays in scaling decisions, potentially affecting performance and user
experience. However, careful tuning of the metric collection frequency and autoscaler
configuration can help mitigate this challenge.

5.4.3. Complexity in Metric Collection & Management

One of the challenges of using custom metrics is the complexity involved in collecting,
managing, and integrating these metrics into Kubernetes. Unlike built-in metrics, which are
automatically collected by Kubernetes, custom metrics require setting up adapters,
configuring APIs, and ensuring that they are reliably collected. For teams without deep
expertise in metrics collection or Kubernetes internals, this can add additional overhead and
require specialized knowledge in monitoring solutions.

6. Conclusion

Evaluating the scalability of Kubernetes pods for event-driven applications requires a careful
analysis of the different scaling techniques available within Amazon EKS. Horizontal Pod
Autoscaling (HPA), leveraging metrics like CPU or memory utilization, is commonly used to
manage pod scaling based on demand. However, for event-driven workloads, where traffic
can be unpredictable and highly variable, HPA's reliance on resource-based metrics may only
sometimes provide the level of responsiveness required. In such cases, custom metrics can
offer a more tailored approach, enabling autoscaling based on application-specific signals like

Distributed Learning and Broad Applications in Scientific Research 1348

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

event queue length or the rate of incoming events. Custom metrics provide greater flexibility
and responsiveness, critical for maintaining application performance and minimizing latency
in event-driven architectures.

Despite the advantages of custom metrics, integrating them into a Kubernetes environment
introduces complexity, requiring additional monitoring tools and careful tuning to ensure
accurate scaling decisions. However, scaling pods in response to specific events rather than
relying solely on resource consumption is a significant benefit for systems that handle bursty,
event-driven workloads. A hybrid approach, combining HPA with custom metrics, could
provide the optimal solution for scaling event-driven applications on EKS. This approach
ensures that Kubernetes can efficiently handle fluctuations in event traffic while maintaining
the elasticity & resilience needed to deliver a consistent user experience.

7. References:

1. Mohanty, S. (2018). Evaluation of serverless computing frameworks based on kubernetes
(Master's thesis).

2. Trnkoczy, J., Pašcinski, U., Gec, S., & Stankovski, V. (2017, September). SWITCH-ing from
multi-tenant to event-driven videoconferencing services. In 2017 IEEE 2nd International
Workshops on Foundations and Applications of Self* Systems (FAS* W) (pp. 219-226). IEEE.

3. Chelliah, P. R., Naithani, S., & Singh, S. (2018). Practical Site Reliability Engineering:
Automate the process of designing, developing, and delivering highly reliable apps and
services with SRE. Packt Publishing Ltd.

4. Gjorgjeski, N., & Jurič, M. (2016). Complex event processing for integration of internet of
things devices (Doctoral dissertation, Bachelor’s thesis: Undergraduate university study
programme computer and information science).

5. Lee, H., Satyam, K., & Fox, G. (2018, July). Evaluation of production serverless computing
environments. In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD)
(pp. 442-450). IEEE.

6. Pérez, A., Moltó, G., Caballer, M., & Calatrava, A. (2018). Serverless computing for
container-based architectures. Future Generation Computer Systems, 83, 50-59.

7. Bila, N., Dettori, P., Kanso, A., Watanabe, Y., & Youssef, A. (2017, June). Leveraging the
serverless architecture for securing linux containers. In 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW) (pp. 401-404). IEEE.

8. Lv, K., Zhao, Z., Rao, R., Hong, P., & Zhang, X. (2016, December). PCCTE: A portable
component conformance test environment based on container cloud for avionics software
development. In 2016 International Conference on Progress in Informatics and Computing
(PIC) (pp. 664-668). IEEE.

Distributed Learning and Broad Applications in Scientific Research 1349

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

9. Nadgowda, S., Suneja, S., & Isci, C. (2017). Paracloud: bringing application insight into
cloud operations. In 9th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
17).

10. Soltani, B., Ghenai, A., & Zeghib, N. (2018). Towards distributed containerized serverless
architecture in multi cloud environment. Procedia computer science, 134, 121-128.

11. Manchana, R. (2017). Optimizing Material Management through Advanced System
Integration, Control Bus, and Scalable Architecture. International Journal of Scientific
Research and Engineering Trends, 3, 239-246.

12. Baldini, I., Cheng, P., Fink, S. J., Mitchell, N., Muthusamy, V., Rabbah, R., ... & Tardieu, O.
(2017, October). The serverless trilemma: Function composition for serverless computing. In
Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (pp. 89-103).

13. Paščinski, U., Trnkoczy, J., Stankovski, V., Cigale, M., & Gec, S. (2018). QoS-Aware
Orchestration of Network Intensive Software Utilities within Software Defined Data Centres:
An Architecture and Implementation of a Global Cluster Manager. Journal of Grid
Computing, 16, 85-112.

14. Kumar, M. (2018). Serverless computing for the Internet of Things.

15. Simioni, A. (2017). Implementation and evaluation of a container-based software
architecture.

16. Komandla, V. Transforming Financial Interactions: Best Practices for Mobile Banking App
Design and Functionality to Boost User Engagement and Satisfaction.

17. Gade, K. R. (2018). Real-Time Analytics: Challenges and Opportunities. Innovative
Computer Sciences Journal, 4(1).

18. Gade, K. R. (2017). Integrations: ETL vs. ELT: Comparative analysis and best practices.
Innovative Computer Sciences Journal, 3(1).

19. Naresh Dulam. The Rise of Kubernetes: Managing Containers in Distributed Systems.
Distributed Learning and Broad Applications in Scientific Research, vol. 1, July 2015, pp. 73-
94

20. Naresh Dulam. DataOps: Streamlining Data Management for Big Data and Analytics .
Distributed Learning and Broad Applications in Scientific Research, vol. 2, Oct. 2016, pp. 28-
50

21. Naresh Dulam, et al. Kubernetes Gains Traction: Orchestrating Data Workloads.
Distributed Learning and Broad Applications in Scientific Research, vol. 3, May 2017, pp. 69-
93

Distributed Learning and Broad Applications in Scientific Research 1350

Distributed Learning and Broad Applications in Scientific Research

Annual Volume 5 [2019]
© 2019 All Rights Reserved

22. Naresh Dulam, et al. Snowflake Vs Redshift: Which Cloud Data Warehouse Is Right for
You? . Distributed Learning and Broad Applications in Scientific Research, vol. 4, Oct. 2018,
pp. 221-40

