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Abstract: 

Migrating from legacy monolithic applications to modern architectures like microservices has 
become a significant focus for organizations looking to stay competitive. However, the 
transition is often fraught with technical and operational challenges for businesses reliant on 
legacy systems. Kubernetes, an open-source container orchestration platform, has emerged as 
a viable solution to bridge the gap, offering a way to manage, deploy, & scale applications 
more efficiently and efficiently. This article explores how Kubernetes can be adopted for 
legacy monolithic applications, particularly within AWS environments. Rather than requiring 
a complete overhaul of legacy code, Kubernetes provides a flexible way to containerize 
applications and gradually move them to a microservices architecture. The article delves into 
key strategies for successful containerization, deployment, and scaling of monolithic 
applications while addressing common challenges organizations face during the transition. It 
highlights best practices for leveraging AWS services alongside Kubernetes, ensuring a 
smooth and cost-effective migration. Through real-world examples, it demonstrates how 
businesses can modernize their applications incrementally, minimizing disruption & avoiding 
the risk of a complete rewrite. The focus is on a gradual, manageable approach to 
modernization—emphasizing careful planning, testing, and iterative implementation—
allowing organizations to enhance scalability and flexibility without sacrificing the stability 
and reliability of their legacy systems. As Kubernetes continues to gain momentum in 
enterprise environments, this article offers practical insights into how companies can navigate 
the complexities of adopting this technology to modernize their legacy monolithic 
applications while preserving operational continuity. 
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1.Introduction 

1.1 Digital Transformation & the Need for Scalability 

As businesses continue to embrace the digital age, the pressure to improve operational 
efficiency, enhance scalability, and deliver faster, more reliable software has intensified. IT 
teams are continuously looking for innovative solutions to address these challenges. Legacy 
systems, particularly those built on monolithic architectures, often become a bottleneck. These 
systems, while dependable and stable, are not equipped to meet the demands of modern 
development practices or scale effectively as business needs evolve. Monolithic applications 
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are typically large, tightly coupled, & difficult to manage, making it cumbersome to make 
changes or introduce new features quickly. 

The pace of change in today’s business landscape means that organizations need to adopt 
more flexible, scalable, & cost-effective infrastructure solutions to remain competitive. With 
the increasing reliance on cloud technologies and the shift toward microservices architectures, 
organizations are exploring ways to modernize their legacy applications without the need for 
an entire system overhaul. This is where Kubernetes comes into play, offering a potential 
solution to ease this transition. 

1.2 The Role of Kubernetes in Modernizing Legacy Applications 

Kubernetes has quickly become the de facto standard for managing containerized applications 
due to its powerful orchestration capabilities. With Kubernetes, organizations can automate 
the deployment, scaling, & management of containerized workloads, which makes it an ideal 
solution for modernizing legacy applications. For companies with existing monolithic 
applications, Kubernetes presents an opportunity to gradually migrate from traditional 
architectures to more agile microservices-based ones. Instead of completely rewriting the 
application from scratch, Kubernetes allows businesses to refactor and break down their 
legacy applications into smaller, more manageable pieces. 

By containerizing monolithic applications and deploying them on Kubernetes clusters, 
businesses can take advantage of the cloud-native benefits that come with using Kubernetes, 
including automated scaling, improved resource management, and greater flexibility. This 
makes Kubernetes a powerful tool for businesses looking to evolve their legacy infrastructure 
without a full rewrite. 

1.3 Challenges of Migrating Monolithic Applications to Kubernetes on AWS 

While the benefits of Kubernetes are clear, transitioning from a monolithic legacy system to a 
cloud-native architecture in AWS comes with its own set of challenges. For starters, the 
complexity of legacy systems can make the process of containerization difficult. Many 
monolithic applications are tightly coupled, with interdependencies that are not easy to 
untangle. Migrating these applications into containers requires careful planning and may 
involve rethinking how the application is structured. 

AWS offers a broad array of services, which can add to the complexity of managing 
Kubernetes clusters. Organizations must carefully assess which AWS services align with their 
needs, ensuring that they can properly integrate them with Kubernetes for optimized 
performance. Other challenges include ensuring the proper management of data, security 
considerations, and adapting to the operational overhead of Kubernetes management. 

2. Containerizing the Monolithic Application 

Containerizing a monolithic application is a critical step when migrating to Kubernetes. It 
involves encapsulating the application's code and dependencies into a lightweight, portable 
container that can run consistently across environments. By doing so, organizations can take 
advantage of Kubernetes' orchestration capabilities, which improve scalability, availability, 
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and ease of deployment. This section outlines the process of containerizing a legacy 
monolithic application for deployment in Kubernetes, highlighting the challenges and 
strategies involved. 

2.1 Understanding the Monolithic Architecture 

Before diving into containerization, it is essential to grasp the architecture of the monolithic 
application. Monolithic applications are built as a single, tightly-coupled unit, where all 
components — such as the user interface, business logic, and database access — coexist in one 
package. This architecture often leads to challenges in scalability and maintainability, which 
makes the migration to a more modular system, like microservices, an appealing option. 

2.1.1 The Need for Containerization 

Containerization provides a solution to many of the challenges associated with monolithic 
applications. Containers encapsulate the application and all its dependencies into a single 
package, which can be easily deployed across different environments. In the context of 
Kubernetes, containers allow for more efficient resource utilization and scalability, while 
ensuring consistency and repeatability in deployment. 

By adopting containers, organizations can: 

● Ensure Environment Consistency: Containers eliminate environment-specific issues 
by packaging all dependencies along with the application. 

● Facilitate Automated Deployments: With container orchestration tools like 
Kubernetes, the deployment process becomes automated, enabling faster release 
cycles and continuous delivery. 

● Improve Scalability & Resilience: Kubernetes provides features like auto-scaling and 
self-healing, which can address the scalability and availability issues commonly faced 
by monolithic applications. 

2.1.2 Key Challenges with Monolithic Applications 

Monolithic applications typically have several limitations that hinder their performance and 
scalability in modern cloud environments. These include: 

● Scalability Issues: Scaling a monolithic application often involves replicating the 
entire system, even when only a specific part of the application needs additional 
resources. 

● Limited Flexibility: Updating or making changes to a single component can be 
cumbersome since all components are tightly coupled and must be redeployed 
together. 

● Long Deployment Cycles: Monolithic applications typically have long and complex 
deployment processes, especially when scaling across multiple environments. 

Understanding these challenges is crucial when planning the transition from a monolithic 
system to a Kubernetes-based infrastructure. 
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2.2 Preparation for Containerization 

Before diving into the actual process of containerization, several preparatory steps must be 
taken to ensure a smooth migration. This involves analyzing the application and its 
dependencies, assessing the existing infrastructure, and planning the containerization 
strategy. 

2.2.1 Assessing Application Dependencies 

The first step in preparing a monolithic application for containerization is to assess its 
dependencies. Monolithic applications often rely on several external libraries, databases, and 
services that must be considered when creating the container. Identifying these dependencies 
early on helps in ensuring that the container can run successfully in a Kubernetes 
environment. 

Key considerations include: 

● External Services: Does the application rely on services like external APIs or 
databases? These need to be integrated into the containerization process. 

● Configuration Management: How are configuration settings managed in the existing 
monolith? Configuration files, environment variables, and secret management must 
be reviewed and adapted for the containerized environment. 

● Dependencies on Legacy Systems: Legacy systems may present challenges when 
containerizing applications. Legacy systems are often tightly coupled with monolithic 
applications, so identifying and mitigating dependencies is crucial. 

2.2.2 Identifying Infrastructure Requirements 

Containerizing a monolithic application involves more than just packaging the code. 
Organizations must also ensure that their infrastructure is capable of supporting containers 
and Kubernetes. This includes evaluating the current hardware, networking, and security 
infrastructure to determine if it needs to be upgraded. 

● Hardware Resources: Containers require certain amounts of CPU, memory, and 
storage. The infrastructure must be able to meet these requirements, especially as the 
application grows. 

● Networking Setup: Kubernetes relies on a well-configured network to ensure smooth 
communication between containers. Configuring networking to handle internal and 
external communications is critical to the success of the containerization process. 

● Security Considerations: Containers can introduce security risks if not properly 
managed. Organizations must consider network policies, identity management, and 
access controls to ensure the containers are secure. 

2.2.3 Planning the Containerization Strategy 
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Once the dependencies are assessed, the next step is to define a containerization strategy. 
There are different approaches to containerizing monolithic applications, and the choice 
depends on the complexity of the application and the resources available. 

● Single Container Strategy: For less complex monolithic applications, a single 
container may suffice. The entire application, including all its dependencies, is 
packaged into one container, simplifying the migration process. 

● Multi-Container Strategy: In more complex cases, breaking the application into 
several smaller components and placing them in separate containers might be more 
efficient. These containers can then be managed and orchestrated using Kubernetes. 

The strategy should align with the organization's goals, whether that’s simplifying 
deployment, improving scalability, or preparing for future microservices adoption. 

2.3 Containerizing the Monolithic Application 

Now that the groundwork has been laid, it’s time to dive into the containerization process 
itself. This phase involves packaging the application into a container, ensuring that it can run 
in a Kubernetes environment with all the necessary dependencies. 

2.3.1 Testing the Container Image 

After the container image is built, it must be tested to ensure that the monolithic application 
functions correctly within the container. This includes running the application in a local 
environment and checking for: 

● Dependency Compatibility: Ensure that all dependencies are properly installed and 
compatible with the container. 

● Application Behavior: Test the application’s core functionality to confirm it works as 
expected inside the container, without any crashes or performance issues. 

● Integration with Other Services: If the application depends on other services (e.g., 
databases or third-party APIs), it’s essential to verify that these services are accessible 
and working correctly. 

Testing the container image thoroughly helps catch any issues early, preventing surprises 
when deploying the application in Kubernetes. 

2.3.2 Building the Container Image 

The first step in containerizing the monolithic application is to build the container image. This 
is done by writing a Dockerfile, a script that defines how the application is packaged into a 
container. The Dockerfile includes instructions on how to: 

● Set the Base Image: Choose an appropriate base image for the application. This could 
be a minimal Linux distribution or a language-specific image (e.g., Node.js, Python). 

● Install Dependencies: The Dockerfile specifies how to install all the dependencies 
required by the application, such as libraries, frameworks, and external tools. 
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● Copy the Application Code: The application’s source code is copied into the container, 
ensuring that it is bundled with all its required assets. 

● Set Environment Variables: Any necessary environment variables or configuration 
settings are defined within the Dockerfile. 

Once the Dockerfile is written, the container image can be built using Docker’s docker build 
command. This image can then be pushed to a container registry (e.g., Docker Hub, Amazon 
ECR) for storage and retrieval. 

2.4 Preparing for Kubernetes Deployment 

Once the monolithic application has been successfully containerized, it’s time to prepare for 
deployment in Kubernetes. This involves configuring the Kubernetes resources (pods, 
deployments, services) that will manage and orchestrate the containers. 

Key considerations for deployment include: 

● Resource Requests and Limits: Define the CPU and memory resources required by 
the container to ensure optimal performance. 

● Health Checks: Implement health checks to monitor the application’s status and 
ensure it remains available and healthy. 

● Scaling: Set up autoscaling policies based on resource utilization or external metrics, 
ensuring that the application can scale as needed. 

3. Setting Up Kubernetes in AWS 

Setting up Kubernetes in AWS can significantly streamline the process of modernizing legacy 
monolithic applications. With Kubernetes' container orchestration capabilities, it becomes 
easier to manage and scale applications on the cloud, while providing a more agile and cost-
effective infrastructure. This section will guide you through the necessary steps to set up 
Kubernetes in AWS, from initial setup to ensuring your applications are fully functional in 
this new environment. 

3.1 Choosing the Right AWS Service for Kubernetes 

Before diving into the specifics of setting up Kubernetes in AWS, it's important to choose the 
right AWS service that aligns with your goals and use case. AWS offers multiple services for 
container orchestration, with the most commonly used being Amazon Elastic Kubernetes 
Service (EKS), which is a managed service for running Kubernetes on AWS. However, other 
options such as EC2 (Elastic Compute Cloud) instances can also be considered for more 
customized Kubernetes setups. 

3.1.1 EC2 Instances for Kubernetes Setup 

If you require more flexibility or prefer to manage your own Kubernetes cluster, setting up 
Kubernetes directly on EC2 instances is a viable option. By choosing EC2 instances, you have 
full control over the infrastructure, including networking, storage, and the choice of instance 
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types. This approach is beneficial for organizations that have unique requirements or want to 
fully customize their Kubernetes environments. 

This method requires more hands-on management, including setting up the Kubernetes 
control plane, worker nodes, and networking. It's essential to configure EC2 instances 
properly and ensure the necessary components are in place for a secure and efficient 
Kubernetes deployment. 

3.1.2 Amazon Elastic Kubernetes Service (EKS) 

Amazon EKS simplifies the management of Kubernetes clusters by handling the setup, 
patching, and scaling of the Kubernetes control plane. It integrates seamlessly with other AWS 
services, such as IAM (Identity and Access Management) for security, CloudWatch for 
logging, and Route 53 for DNS management, making it a popular choice for running 
Kubernetes at scale. 

With EKS, users don’t need to worry about managing the underlying infrastructure, which 
allows them to focus more on deploying and managing applications. It’s an ideal solution for 
businesses that want to use Kubernetes without the operational burden of managing their 
own Kubernetes master nodes and associated infrastructure. 

3.2 Setting Up the Kubernetes Cluster 

Once the service choice is made, the next step is to set up the Kubernetes cluster itself. This 
involves configuring the worker nodes, setting up networking, and preparing the 
environment for application deployment. 

3.2.1 Configuring the Control Plane 

The Kubernetes control plane is responsible for managing the cluster and ensuring its state. 
Whether you're using EKS or EC2, you need to configure the control plane. For EKS, AWS 
manages the control plane for you, making the process relatively straightforward. With EC2, 
you must manually set up components like the API server, scheduler, and controller manager. 

The control plane also includes etcd, a key-value store that holds the cluster's configuration 
data. Ensuring the control plane is securely configured and properly managed is critical for 
the stability and reliability of your Kubernetes cluster. 

3.2.2 Configuring Networking 

Networking is a critical aspect of Kubernetes setup in AWS. You need to configure networking 
so that the control plane can communicate with the worker nodes and ensure smooth 
communication between services within the cluster. 

AWS VPC (Virtual Private Cloud) is commonly used to set up the networking infrastructure. 
This involves creating subnets, route tables, and configuring security groups to allow proper 
communication while maintaining security. Kubernetes networking requires configuring a 



Distributed Learning and Broad Applications in Scientific Research  1393 

 

 
Distributed Learning and Broad Applications in Scientific Research 

Annual Volume 5 [2019] 
© 2019 All Rights Reserved 

CNI (Container Network Interface) plugin, such as AWS VPC CNI or Calico, to manage pod 
networking. 

3.2.3 Configuring the Worker Nodes 

Once the control plane is set up, the next step is configuring the worker nodes that will run 
the application containers. Worker nodes are EC2 instances in an EKS setup, or EC2 instances 
manually managed in a self-hosted Kubernetes cluster. Worker nodes need to be properly 
configured with Kubernetes components, such as kubelet and kube-proxy, to enable 
communication with the control plane and manage the deployment of applications. 

The scalability and performance of the Kubernetes cluster depend on the configuration of the 
worker nodes, including the instance type, network settings, and storage options. 

3.3 Security & Identity Management 

Security is a top priority when setting up Kubernetes in AWS, especially when dealing with 
legacy applications that may have vulnerabilities. AWS offers several tools and features to 
help ensure that your Kubernetes setup is secure and compliant with industry standards. 

3.3.1 Role-Based Access Control (RBAC) 

Kubernetes provides Role-Based Access Control (RBAC) to define what actions users can 
perform within the cluster. By setting up RBAC, you can ensure that only authorized users 
have access to specific Kubernetes resources and operations. 

For example, you can create roles and role bindings to control access to namespaces, 
deployments, services, and other Kubernetes resources. Combining IAM with RBAC provides 
a layered security model that enhances overall security for your Kubernetes environment. 

3.3.2 IAM Integration for Kubernetes 

Identity and Access Management (IAM) plays a crucial role in securing your Kubernetes 
setup. When using EKS, IAM roles and policies are used to control access to the Kubernetes 
cluster and AWS resources. By integrating Kubernetes with IAM, you can manage 
permissions and control access to specific resources based on the user's role. 

For example, you can create IAM policies that restrict access to certain services or allow 
specific users to deploy applications to the cluster. Configuring IAM for your Kubernetes 
cluster helps minimize the risk of unauthorized access and enhances security. 

3.3.3 Network Policies for Pod Communication 

In addition to IAM and RBAC, network policies can be used to control communication 
between pods in a Kubernetes cluster. These policies allow you to define which pods can 
communicate with each other and with external services, adding another layer of security to 
your setup. 
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Network policies are particularly important when migrating legacy monolithic applications, 
as they ensure that the communication between different components of the application 
remains secure and isolated when needed. 

3.4 Application Deployment on Kubernetes 

Now that the Kubernetes cluster is set up and secured, the next step is deploying your legacy 
monolithic applications. Migrating monolithic applications to Kubernetes involves breaking 
down the monolithic components into manageable services, containers, and deploying them 
onto the cluster. 

3.4.1 Containerizing Legacy Applications 

The first step in deploying a legacy monolithic application to Kubernetes is to containerize the 
application. This involves packaging the application and all of its dependencies into a Docker 
container, ensuring that the application can run consistently across different environments. 

You may need to refactor certain components of the application, such as breaking down the 
monolith into microservices or adjusting configurations to work within the Kubernetes 
ecosystem. Once containerized, the application can be deployed to the Kubernetes cluster. 

3.4.2 Deploying to Kubernetes 

After containerizing the application, the next step is deploying the containers to Kubernetes. 
Kubernetes uses resources like Pods, Deployments, and Services to manage and scale 
applications. The deployment process typically involves creating Kubernetes manifest files 
that define the desired state of the application and its components. 

For legacy applications, it's essential to carefully plan the deployment process to avoid 
disruptions. You might need to set up initial deployments in a way that allows for smooth 
scaling and gradual migration of the monolith to a more modular structure. 

4. Migrating Data & State Management 

Migrating legacy monolithic applications to a Kubernetes environment within AWS requires 
a thorough understanding of how data is managed, stored, and accessed within the 
application. As part of this migration, state management and data migration are two of the 
most complex components. In this section, we will discuss the strategies and best practices for 
migrating both the data and the state of your application to Kubernetes in AWS. The process 
involves several key stages: planning the migration, choosing the appropriate storage 
solutions, managing the state, and ensuring data consistency across environments. 

4.1. Planning the Data Migration 

Migrating data in a legacy monolithic application involves careful consideration of data 
storage, consistency, and security. It’s important to plan ahead, ensuring that both data 
integrity and accessibility are maintained during the migration process. 
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4.1.1. Identifying Kubernetes-Compatible Storage Options 

Once the existing data needs are understood, the next step is to identify Kubernetes-
compatible storage solutions. Kubernetes offers several options for persistent storage, 
including network-attached storage (NAS), block storage, and cloud-native storage solutions. 
For AWS, services like Amazon Elastic Block Store (EBS), Amazon S3, and Amazon RDS are 
frequently used. The choice of storage depends on the specific needs of the application. For 
example, block storage is ideal for high-performance databases, while object storage like S3 is 
useful for storing large volumes of unstructured data. 

4.1.2. Assessing Current Data Storage Requirements 

Before migrating to Kubernetes, it is essential to assess the current data storage requirements 
of the legacy application. This includes identifying the types of data (e.g., relational, non-
relational, files) and understanding how the data is currently structured and accessed. A 
complete data audit will reveal how tightly coupled the application is with the underlying 
data storage system. Understanding whether the application uses a monolithic database or 
whether different parts of the application interact with separate data stores will help 
determine the best migration path. 

4.1.3. Evaluating Data Migration Strategies 

The migration of data can be accomplished in several ways, depending on the size of the data 
and the complexity of the application. One common strategy is to perform a "lift-and-shift" 
approach, where the data is moved from the legacy infrastructure to AWS while maintaining 
the current database architecture. Alternatively, the migration can involve refactoring the 
database to a cloud-native solution, such as transitioning from a monolithic SQL database to 
Amazon RDS or DynamoDB. Each approach has its benefits and trade-offs. A phased 
approach, migrating data incrementally while the monolithic application is still operational, 
can minimize downtime and reduce risks. 

4.2. Managing State in a Kubernetes Environment 

Managing state is a challenge, as it is primarily designed for stateless applications. Legacy 
monolithic applications, however, are often tightly coupled with their data and maintain 
significant amounts of internal state. Managing this state efficiently in a Kubernetes 
environment is key to ensuring that applications function correctly post-migration. 

4.2.1. Implementing Persistent Volumes (PVs) & Persistent Volume Claims (PVCs) 

Kubernetes supports persistent storage through Persistent Volumes (PVs) and Persistent 
Volume Claims (PVCs). PVs represent actual storage resources in the cluster, and PVCs are 
requests for storage that are bound to a PV. Using PVs and PVCs ensures that data persists 
across container restarts, which is essential when migrating legacy applications that rely 
heavily on their data being available at all times. This setup allows Kubernetes to maintain 
the integrity of the application’s state even when the container is terminated and re-created. 

4.2.2. Leveraging StatefulSets for State Management 
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Kubernetes StatefulSets are a powerful tool for managing stateful applications. They provide 
guarantees about the ordering and uniqueness of Pods, ensuring that each pod is assigned a 
persistent identifier, which is crucial for maintaining state across restarts. StatefulSets are 
typically used in situations where the application requires stable, persistent storage. This is 
particularly important for legacy monolithic applications where certain services (like 
databases) rely on consistent storage and a known identity. 

4.2.3. Integrating Data with AWS Services 

AWS provides various services for integrating stateful applications with cloud storage. For 
instance, Amazon Elastic File System (EFS) can be mounted directly into Kubernetes Pods, 
allowing for shared access to persistent storage across Pods. Additionally, AWS RDS provides 
managed database services, simplifying the integration of database state management within 
Kubernetes. For distributed systems, DynamoDB can be used for scalable, high-performance 
storage. Ensuring that Kubernetes Pods can communicate with these AWS services seamlessly 
is critical to maintaining the application's state throughout the migration process. 

4.3. Ensuring Data Consistency & Integrity 

Data consistency is another critical consideration when migrating legacy monolithic 
applications to Kubernetes. Legacy systems often rely on complex data models with strong 
consistency requirements, which need to be preserved in the cloud environment. 

4.3.1. Leveraging Eventual Consistency 

It may not be necessary to guarantee immediate consistency across all systems. In these cases, 
eventual consistency is an appropriate strategy. Eventual consistency allows for data to be 
replicated and synced across various systems at different times, which is particularly useful 
when migrating applications to a distributed system like Kubernetes. This approach is often 
adopted in microservices architectures and can be implemented in Kubernetes by using 
message queues (like Amazon SQS) to ensure that data changes are eventually propagated to 
all systems. 

4.3.2. Implementing Database Replication 

One way to ensure data consistency during migration is by implementing database 
replication. This involves creating a copy of the data from the legacy database and syncing it 
with the new database in the cloud. AWS offers services like RDS for database replication and 
Multi-AZ deployments to ensure high availability and durability of the data. Replication 
ensures that even if the old system fails during migration, the new system will have an up-to-
date copy of the data, ensuring minimal disruption. 

4.3.3. Using Distributed Caching for Performance 

To improve the performance of the newly migrated application, distributed caching can be 
used to reduce the load on databases and improve response times. Kubernetes supports 
distributed caching solutions such as Redis and Memcached, which can be configured as 
stateful sets to provide fast, in-memory data access across the cluster. Integrating caching 
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mechanisms helps ensure that data is accessible with low latency, which is especially 
important for legacy applications with high data access demands. 

4.4. Data Migration Testing & Validation 

Once the data has been migrated, it is essential to validate that it has been transferred correctly 
and is accessible in the Kubernetes environment. This ensures that the application performs 
as expected and that no data loss has occurred during the migration. 

4.4.1. Performance Benchmarking 

Performance benchmarking is necessary to ensure that the migrated data can be processed at 
the same or better speed than in the legacy environment. By comparing response times, query 
execution speeds, and other performance metrics before and after the migration, teams can 
ensure that the migration process has not negatively impacted the application’s performance. 
AWS provides tools like CloudWatch for monitoring application performance post-migration. 

4.4.2. Data Integrity Checks 

Data integrity checks should be performed to ensure that no corruption or loss of data has 
occurred during the migration. This can involve checksum comparisons, row counts, and 
validation scripts to verify that the migrated data is identical to the original data. It is 
important to conduct these checks both before and after the migration to guarantee that data 
consistency is maintained. 

5. Implementing Continuous Integration/Continuous Deployment (CI/CD) for Kubernetes 
in Legacy Monolithic Applications 

The shift from traditional monolithic applications to Kubernetes-based environments can be 
transformative for organizations looking to scale their infrastructure and adopt modern 
DevOps practices. However, ensuring that legacy systems continue to perform seamlessly 
during this transition requires the careful implementation of Continuous Integration and 
Continuous Deployment (CI/CD) pipelines. These pipelines enable automated testing, 
building, and deployment, making it easier to manage legacy applications in Kubernetes 
clusters while reducing the risk of manual errors. In this section, we explore the key 
components and steps involved in implementing CI/CD for legacy monolithic applications 
in AWS using Kubernetes. 

5.1 Overview of CI/CD in Kubernetes for Legacy Applications 

Continuous Integration (CI) and Continuous Deployment (CD) are essential for maintaining 
the reliability and efficiency of modern software delivery. When implementing Kubernetes 
for legacy applications, CI/CD becomes crucial as it automates the integration of code changes 
and the deployment of those changes into production. This automation can significantly speed 
up the release process and minimize human intervention, which is especially beneficial for 
legacy applications with complex architectures. 

5.1.1 Importance of CI/CD in Kubernetes 
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CI/CD provides a streamlined process for managing applications through containers. 
Containers encapsulate the application and its dependencies, which makes them portable and 
scalable. Kubernetes, in turn, provides orchestration for these containers, ensuring that they 
are deployed, scaled, and managed efficiently. The integration of CI/CD with Kubernetes 
allows legacy monolithic applications to be continuously updated, tested, and deployed 
without disruption, ensuring that they remain operational during the modernization process. 

5.1.2 Benefits of CI/CD for Legacy Applications in Kubernetes 

By adopting CI/CD pipelines in Kubernetes for legacy monolithic applications, organizations 
can achieve several benefits. These include improved application reliability through 
automated testing, faster release cycles, and more efficient rollbacks when issues arise. CI/CD 
allows for rapid iterations on code while minimizing downtime, and as the application 
evolves in the Kubernetes environment, it becomes easier to scale and deploy microservices 
in the future if needed. 

5.1.3 Key Challenges with Legacy Monolithic Applications 

Legacy monolithic applications often come with several challenges, including rigid 
architecture, tight coupling between components, and outdated dependency management. 
These factors can complicate the implementation of CI/CD pipelines, especially when 
transitioning from a traditional deployment model to a containerized Kubernetes 
environment. The integration process can also be slow, and the risk of introducing errors into 
production can be higher due to the lack of flexibility in legacy systems. 

5.2 Setting Up the CI/CD Pipeline 

The setup of a CI/CD pipeline for Kubernetes in legacy applications requires careful planning 
and implementation. Below are the essential steps to set up the pipeline effectively. 

5.2.1 Integrating Version Control Systems (VCS) 

A version control system (VCS) such as Git is the foundation for a CI/CD pipeline. It enables 
teams to collaborate on code, track changes, and manage releases. In a Kubernetes 
environment, each change to the monolithic application’s codebase should trigger the CI 
process, where the code is compiled, tested, and validated before being deployed. For legacy 
applications, it's crucial to integrate the version control system with automated build tools 
like Jenkins or GitLab CI to ensure that code changes are automatically detected and 
processed. 

5.2.2 Implementing Automated Testing 

Automated testing is a critical part of the CI/CD pipeline. For legacy applications, it’s 
important to write tests that verify both the functionality and stability of the application. Unit 
tests, integration tests, and end-to-end tests should be part of the pipeline to ensure that the 
monolithic application works as expected after any code change. Test failures should stop the 
deployment process, preventing potential issues in production environments. 
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5.2.3 Automating the Build Process 

The next step is automating the build process. In Kubernetes-based environments, legacy 
applications need to be containerized before deployment. Automated build tools such as 
Jenkins, Travis CI, or GitLab CI can be configured to build Docker images for the monolithic 
application whenever changes are pushed to the version control system. These images should 
be pushed to a container registry (such as AWS Elastic Container Registry - ECR) to make 
them available for deployment on the Kubernetes cluster. 

5.3 Deploying to Kubernetes 

Once the code has been tested and validated, the next step is deploying it to the Kubernetes 
environment. Kubernetes offers several deployment strategies that can be leveraged to ensure 
a smooth deployment process for legacy applications. 

5.3.1 Creating Kubernetes Manifests 

Kubernetes deployments require manifest files (YAML) that define how the application will 
be deployed. For legacy monolithic applications, creating these manifests may involve 
defining containers, setting resource limits, configuring networking policies, and ensuring 
that the application’s state is persistent. Tools like Helm can be used to manage these 
Kubernetes manifests, making it easier to configure and deploy complex applications. 

5.3.2 Managing Rollbacks & Failures 

One of the benefits of Kubernetes is its ability to roll back to a previous stable version if a 
deployment fails. In the case of legacy applications, this feature is particularly valuable, as it 
ensures that any issues arising from a deployment can be quickly mitigated. The CI/CD 
pipeline should be configured to trigger automatic rollbacks if errors are detected during 
deployment, ensuring that the monolithic application remains stable in production. 

5.3.3 Continuous Deployment Strategies 

In continuous deployment, every change that passes automated testing is automatically 
deployed to production. While this approach accelerates delivery, it also requires additional 
safeguards to prevent faulty code from reaching production. For legacy applications, a canary 
release or blue/green deployment strategy is recommended. These strategies allow for a 
gradual rollout of changes, minimizing the impact on users and providing the opportunity to 
monitor for issues before a full-scale deployment. 

5.4 Continuous Monitoring & Optimization 

Once the application is deployed, it is essential to continuously monitor its performance and 
optimize the CI/CD pipeline to address evolving challenges. 

5.4.1 Optimizing the CI/CD Pipeline 



Distributed Learning and Broad Applications in Scientific Research  1400 

 

 
Distributed Learning and Broad Applications in Scientific Research 

Annual Volume 5 [2019] 
© 2019 All Rights Reserved 

The CI/CD pipeline itself should also be continuously optimized. Legacy applications often 
have dependencies that need to be managed carefully, and the build process may need to be 
adjusted to accommodate changes in the Kubernetes environment. Tools like Jenkins X or 
Spinnaker can help streamline the process by offering integrated solutions for Kubernetes-
based deployments, including advanced deployment strategies and built-in monitoring. 

5.4.2 Implementing Monitoring Tools 

Monitoring tools such as Prometheus and Grafana can be used to track the health and 
performance of the legacy monolithic application deployed in Kubernetes. These tools 
provide real-time insights into the application’s metrics, such as CPU and memory usage, 
response times, and error rates. By monitoring these metrics, teams can quickly identify 
potential issues and take corrective action before they impact users. 

6. Monitoring & Managing the Application 

Successfully adopting Kubernetes for legacy monolithic applications involves not only 
migrating the application to a containerized environment but also ensuring that it remains 
reliable, scalable, and maintainable over time. Monitoring and managing such applications in 
Kubernetes is crucial to track their health, performance, and operational status. This section 
outlines key considerations and practices for effectively monitoring and managing legacy 
monolithic applications in a Kubernetes-based environment. 

6.1 Establishing Monitoring Frameworks 

Effective monitoring starts with establishing a robust monitoring framework to track the 
performance, availability, and health of the application. Monitoring tools and frameworks 
should be chosen based on their ability to integrate with Kubernetes, handle complex 
application metrics, and provide real-time insights. 

6.1.1 Implementing Third-Party Monitoring Tools 

Third-party monitoring tools like Prometheus, Grafana, and Datadog provide more granular 
control over application metrics. They can integrate seamlessly with Kubernetes, offering 
detailed dashboards, customizable alerts, and long-term trend analysis. These tools can help 
track application-specific metrics, which are vital for legacy monolithic applications that may 
not have been designed with modern cloud-native observability in mind. 

6.1.2 Integration with Kubernetes Metrics 

Kubernetes provides powerful native tools such as kubectl, the Kubernetes Metrics Server, 
and the Kubernetes Dashboard to gather essential resource usage data (CPU, memory, etc.) 
across clusters. For legacy monolithic applications, these tools can be leveraged to gain 
insights into pod health and cluster resource consumption. However, these native tools may 
fall short in providing deep, application-level insights. 

6.1.3 Leveraging Log Management Systems 
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Logs are a critical aspect of understanding the behavior and health of legacy applications. 
While Kubernetes natively collects logs, integrating with external log management systems 
such as ELK (Elasticsearch, Logstash, and Kibana) or Splunk enhances log aggregation, 
searching, and visualization. This enables teams to proactively identify performance 
bottlenecks, errors, and issues before they escalate. 

6.2 Application Performance Monitoring 

Legacy monolithic applications typically consist of a single, large codebase, which may 
introduce challenges in identifying performance issues. Implementing comprehensive 
application performance monitoring (APM) is critical to understanding the full scope of 
application health and behavior in the cloud-native Kubernetes environment. 

6.2.1 Tracking Resource Utilization 

Legacy applications migrated to Kubernetes may face challenges due to resource overuse or 
underutilization. Kubernetes provides resource requests and limits that help manage CPU 
and memory utilization. However, specific resource bottlenecks, such as database resource 
contention or excessive network traffic, may require more in-depth monitoring. Solutions 
such as Prometheus, in combination with custom dashboards, can track detailed resource 
metrics, enabling optimization of resource usage over time. 

6.2.2 Using Distributed Tracing for Microservices-Like Insights 

For monolithic applications, implementing distributed tracing tools such as Jaeger or 
OpenTelemetry can provide visibility into how different parts of the application communicate 
with one another. While not natively built for monolithic architectures, distributed tracing can 
be used to understand how monolithic applications interact with Kubernetes clusters, cloud-
native services, and other infrastructure components, providing insights into performance 
bottlenecks and failure points. 

6.2.3 Monitoring Application Latency 

Monitoring the latency of API calls, database queries, and internal communication between 
components is particularly important for legacy monolithic applications. Tools like 
Prometheus, along with custom metrics, can track the response times of different services and 
endpoints. High latency or timeouts often indicate issues such as resource contention, 
inefficient code paths, or integration failures between the legacy application and cloud-native 
services. 

6.3 Managing Application Health 

Proactively managing the health of legacy applications in a Kubernetes environment is 
essential to maintain uptime and prevent service disruptions. Kubernetes provides several 
mechanisms to manage the health of pods and services, but these need to be complemented 
by manual checks and custom health probes. 

6.3.1 Establishing Auto-Healing Mechanisms 
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Kubernetes provides auto-healing features, such as automatically restarting failed pods. 
However, auto-healing should not be relied upon as a catch-all solution for application 
failures. For legacy monolithic applications, it's important to set up effective monitoring and 
alerting systems to identify the root cause of failure rather than relying on Kubernetes to 
restart pods repeatedly. Combining auto-healing with in-depth error analysis can minimize 
downtime and enhance overall application stability. 

6.3.2 Setting Up Liveness & Readiness Probes 

Kubernetes allows the configuration of liveness and readiness probes, which are used to 
monitor the health of running pods. Liveness probes ensure that a pod is running properly, 
while readiness probes confirm that the pod is ready to serve traffic. For legacy applications, 
especially monolithic ones, configuring these probes effectively is crucial to avoid downtime 
or service disruption. Custom health check endpoints should be defined, taking into account 
the legacy system's unique requirements, such as database connectivity or complex internal 
service dependencies. 

7. Conclusion 

Adopting Kubernetes for legacy monolithic applications in AWS can be a transformative 
process for organizations looking to modernize their infrastructure and scale more effectively. 
While monolithic applications have served as the backbone of many enterprises, they often 
need help to meet the demands of modern development practices, such as continuous 
integration and continuous deployment (CI/CD), microservices, and the ability to scale 
quickly. Kubernetes offers a robust solution to these challenges by providing container 
orchestration, enabling applications to run more efficiently, and making managing 
deployments, scaling, and monitoring easier. When migrating legacy applications to 
Kubernetes, organizations can take advantage of AWS's robust cloud services, which offer 
both the flexibility and scalability needed to support Kubernetes clusters. Additionally, 
Kubernetes' ecosystem provides tools for automating tasks such as scaling, logging, and 
security, making the transition smoother and more manageable. 

However, the adoption of Kubernetes for legacy monolithic applications has its challenges. A 
key hurdle lies in breaking down the tightly coupled components of a monolithic application 
into more minor, containerized services that Kubernetes can orchestrate. This requires careful 
planning, as shifting from monolith to microservices often involves significant changes to the 
application architecture and development workflow. Legacy applications may also depend 
on outdated infrastructure, complicating the transition. Organizations must focus on 
gradually decomposing their monolithic applications to mitigate these challenges, ensuring 
they are prepared to handle the complexities of managing distributed systems. Leveraging 
AWS's managed Kubernetes service, Amazon EKS can help simplify infrastructure 
management, but the organization must still invest time and resources into refactoring code 
and updating workflows. Despite these challenges, the long-term benefits of Kubernetes 
adoption — including enhanced scalability, improved resource utilization, and greater 
development agility — make it a worthwhile endeavour for organizations ready to embrace 
modern cloud-native practices. 
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