
Distributed Learning and Broad Applications in Scientific Research 603

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Network Isolation Techniques in Multi-Tenant EKS Clusters

Babulal Shaik, Cloud Solutions Architect at Amazon Web Services, USA

Abstract:

Managing network isolation in multi-tenant Amazon Elastic Kubernetes Service (EKS)

clusters is critical to ensuring security, scalability, and compliance in cloud-native

environments. In such clusters, multiple tenants or teams often share resources, creating a

potential for unintended access and communication between workloads. This abstract

explores practical techniques for achieving network isolation in these scenarios, focusing on

Kubernetes-native features and AWS-specific tools. Key strategies include: Leveraging

Kubernetes Network Policies to enforce fine-grained communication rules between pods and

namespaces, Utilizing AWS VPCs and security groups for broader network segmentation and

Implementing service meshes like Istio for more dynamic traffic control and observability.

Additionally, concepts such as tenant-aware namespace strategies, Role-Based Access Control

(RBAC), and dedicated subnets within a shared VPC are discussed to achieve comprehensive

isolation. By combining Kubernetes' inherent capabilities with AWS-specific networking

constructs, organizations can balance isolation with operational efficiency, enabling safe

multi-tenancy without compromising cost-effectiveness or performance. This article provides

actionable insights and best practices for engineers, security teams, and DevOps professionals

aiming to secure their EKS clusters while maintaining flexibility for diverse workloads.

Keywords: Network isolation, multi-tenant EKS clusters, Kubernetes, network policies,

service mesh, pod security, AWS EKS, Calico, Istio, Linkerd, traffic segmentation, namespace

isolation, tenant segregation, Kubernetes networking, multi-tenancy, mTLS, access control,

traffic encryption, compliance, security best practices, Kubernetes audit logs, AWS VPC Flow

Logs, cluster segmentation.

1. Introduction

Distributed Learning and Broad Applications in Scientific Research 604

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

As organizations increasingly adopt Kubernetes for managing containerized workloads, the

demand for efficient multi-tenant environments has risen sharply. Multi-tenancy in

Kubernetes refers to the ability to host multiple applications, teams, or business units within

a single cluster, leveraging shared resources while maintaining strict isolation between

tenants. This approach offers a cost-effective way to optimize infrastructure usage but

introduces significant challenges, particularly in networking.

One of the most critical aspects of managing multi-tenant Kubernetes environments is

ensuring robust network isolation. In an Elastic Kubernetes Service (EKS) cluster, where

multiple workloads coexist, secure and efficient networking is a cornerstone of operational

success. Without adequate isolation, vulnerabilities in one tenant’s application could

compromise the security, performance, or availability of others. This risk makes network

isolation a top priority in designing shared Kubernetes clusters.

1.1 Context & Background

1.1.1 Why Network Isolation Is Crucial in Shared EKS Clusters?

Network isolation ensures that tenants cannot access or interfere with each other’s resources.

Beyond security, isolation also plays a role in maintaining predictable performance. If one

tenant’s application faces a surge in network traffic, it should not impact the network

performance of other tenants.

The default Kubernetes networking model, while powerful, was not designed with strict

multi-tenancy in mind. Some key challenges include:

● Namespace Segmentation: While namespaces provide a logical separation of

resources, they are not sufficient for strict network isolation.

● Pod-to-Pod Communication: Kubernetes allows unrestricted communication

between pods by default, which is unsuitable for multi-tenant setups.

● Lack of Built-in Policies: Kubernetes lacks native tools to enforce detailed network

segmentation, making it necessary to rely on third-party solutions or custom

configurations.

Distributed Learning and Broad Applications in Scientific Research 605

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

These challenges highlight the need for specific techniques and tools to implement network

isolation effectively.

1.1.2 Defining Multi-Tenant Kubernetes Environments

Multi-tenancy in Kubernetes involves hosting different users or groups, referred to as tenants,

within a single cluster. Tenants could range from distinct applications within the same

organization to entirely separate entities using a managed service. The core idea is to enable

resource sharing—such as compute, storage, and networking—while ensuring that tenants

remain independent and isolated from one another.

The architecture of Kubernetes inherently supports open communication between pods. This

default behavior, while useful for single-tenant environments, poses risks in shared setups.

For example, by default, any pod in a Kubernetes cluster can communicate with any other

pod, regardless of namespace. In a multi-tenant scenario, this openness can lead to data

breaches, unauthorized access, or accidental misconfigurations that impact other tenants.

1.2 The Importance of EKS in Cloud-Native Deployments

Amazon Elastic Kubernetes Service (EKS) is a fully managed Kubernetes service that

simplifies the deployment, scaling, and management of Kubernetes clusters on AWS. It

eliminates much of the operational overhead associated with running Kubernetes, allowing

teams to focus on their applications.

1.2.1 Multi-Tenancy in EKS Clusters

Multi-tenancy in EKS is typically implemented using Kubernetes namespaces combined with

AWS-specific features such as VPCs, security groups, and IAM policies. While namespaces

provide logical segmentation within the cluster, AWS networking tools can enforce stricter

isolation at the infrastructure level.

However, the complexity of Kubernetes networking in a shared environment means that

simply relying on default features is not enough. Administrators must adopt advanced

techniques and best practices to achieve effective isolation and meet the specific needs of their

tenants.

Distributed Learning and Broad Applications in Scientific Research 606

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

EKS has become a popular choice for organizations embracing cloud-native deployments. Key

features include:

● Integration with AWS Ecosystem: EKS integrates seamlessly with AWS services like

IAM, VPC, and CloudWatch, providing a robust foundation for production-grade

deployments.

● Managed Control Plane: AWS handles the management and scaling of the Kubernetes

control plane, reducing the operational burden on teams.

● Flexibility for Multi-Tenancy: EKS supports multi-tenancy through features like

namespaces, IAM roles for service accounts, and network policies.

Despite these benefits, achieving secure and efficient multi-tenancy in EKS clusters requires

careful planning, particularly around networking. Network isolation techniques are critical to

ensure that tenants can coexist without compromising security, performance, or compliance.

1.3 Objectives of This Article

This article aims to provide a comprehensive overview of network isolation techniques in

multi-tenant EKS clusters. We will delve into the strategies and tools that can help achieve

robust isolation, addressing both Kubernetes-native and AWS-specific solutions. By the end

of this guide, readers will have a clear understanding of:

● Balancing Security & Performance: Insights into creating isolation without

compromising tenant usability or resource efficiency.

● Best Practices for Multi-Tenant Clusters: Recommendations for maintaining secure

and efficient shared environments.

● Techniques for Network Isolation: Analyzing approaches like network policies,

service mesh, and VPC peering.

By exploring these aspects, this guide seeks to empower Kubernetes administrators and

DevOps teams to build safer, more reliable multi-tenant environments on EKS.

2. Challenges in Network Isolation

2.1 Overview of Networking in Kubernetes

Distributed Learning and Broad Applications in Scientific Research 607

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Kubernetes has revolutionized how organizations deploy and manage containerized

applications. One of its key features is a robust and dynamic networking model that facilitates

communication between pods, services, and external resources. In a Kubernetes cluster, every

pod is assigned a unique IP address, allowing seamless communication without the need for

additional network translation.

As straightforward as this might sound, networking in Kubernetes becomes complex in multi-

tenant environments, especially in managed solutions like Amazon Elastic Kubernetes Service

(EKS). Multi-tenancy introduces unique challenges, primarily around ensuring strict network

isolation between tenants to protect sensitive data, enforce compliance, and prevent

unauthorized communication.

2.2 Potential Risks in Multi-Tenant Environments

2.2.1 Unauthorized Pod Communication

Kubernetes networking is inherently flat, meaning that by default, any pod can communicate

with any other pod within the cluster. While this design simplifies application deployment, it

poses significant risks in multi-tenant scenarios. Unauthorized pod communication could

lead to several problems, including:

● Denial of service (DoS): A poorly designed or malicious pod from one tenant might

flood the network with requests, disrupting services for other tenants.

● Lateral movement of threats: If an attacker gains access to one pod, they can

potentially probe and exploit vulnerabilities in other pods across tenants.

● Data snooping: Without proper isolation, pods could capture unencrypted traffic or

leverage other methods to intercept communication between tenants.

These risks highlight the importance of implementing robust network segmentation and

isolation mechanisms in multi-tenant clusters.

2.2.2 Cross-Tenant Data Leakage

One of the most pressing concerns in multi-tenant environments is the risk of cross-tenant

data leakage. In Kubernetes, pods from different namespaces often share the same network,

Distributed Learning and Broad Applications in Scientific Research 608

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

meaning they can potentially communicate with one another if proper network policies are

not enforced. This can lead to scenarios where a pod from one tenant gains unintended access

to resources or sensitive data belonging to another tenant.

Imagine a scenario where a misconfigured network policy inadvertently allows traffic from a

malicious pod in Tenant A to access the database service of Tenant B. Even if such access is

unintended, it could result in data breaches or severe compliance violations. In environments

handling critical data, such as financial transactions or healthcare records, the consequences

could be catastrophic.

2.2.3 Compliance and Security Concerns

Organizations must adhere to strict compliance standards like GDPR, HIPAA, or PCI DSS.

These standards often mandate strong data isolation to prevent unauthorized access and

ensure customer data privacy. A lack of proper network isolation in a multi-tenant Kubernetes

environment could result in non-compliance, exposing organizations to hefty fines and

reputational damage.

Security audits often require proof that mechanisms are in place to enforce network isolation.

This includes documentation, regular testing, and monitoring. Failing to meet these

requirements could lead to failed audits and suspension of critical certifications.

A company using a multi-tenant EKS cluster to manage customer applications may be

obligated to demonstrate that no tenant can access another tenant’s data or interfere with their

operations. Achieving this level of isolation without compromising performance or scalability

can be challenging, particularly as the cluster grows and more tenants are onboarded.

2.3 Striking a Balance Between Security & Usability

While the risks of poor network isolation in multi-tenant environments are evident, the

solutions to mitigate these risks can sometimes be complex. Overly restrictive policies might

hinder collaboration or performance, while lax policies leave the system vulnerable.

Kubernetes and EKS offer tools like Network Policies, security groups, and custom

networking plugins that can help achieve the right balance.

Distributed Learning and Broad Applications in Scientific Research 609

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Another consideration is the use of tools like service meshes (e.g., Istio or Linkerd) that

provide fine-grained control over service-to-service communication. These solutions enhance

visibility and security by enabling encryption, authentication, and traffic management

between services.

Kubernetes Network Policies allow administrators to control which pods can communicate

with one another based on defined rules. These policies can be scoped to namespaces,

ensuring tenants are isolated from one another. Additionally, EKS integrates with AWS

security groups, enabling another layer of isolation by defining access rules at the instance

level.

3. Network Policies in Kubernetes

3.1 What Are Network Policies?

Network policies are a Kubernetes feature that controls traffic flow at the pod level. They

determine how pods can communicate with each other and with external services. By default,

Kubernetes is designed to allow unrestricted communication between pods within a cluster.

While this open communication can be beneficial for certain workflows, it poses a security

risk in multi-tenant or production environments. Network policies act as a safeguard,

providing fine-grained control over allowed and denied traffic.

3.1.1 Overview of Kubernetes NetworkPolicy Objects

A NetworkPolicy in Kubernetes is a declarative object that specifies how groups of pods can

communicate with each other or with external endpoints. It works by defining rules based on

labels, namespaces, and specific traffic criteria such as IP ranges, protocols, and ports.

Key components of a NetworkPolicy include:

● Ingress Rules: Control inbound traffic to the selected pods.

● Pod Selector: Specifies which pods the policy applies to.

● Policy Types: Defines whether the policy applies to ingress, egress, or both.

● Egress Rules: Control outbound traffic from the selected pods.

Distributed Learning and Broad Applications in Scientific Research 610

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Importantly, network policies only work with network plugins that support them, such as

Calico, Cilium, or AWS’s native VPC CNI plugin in EKS.

3.2 Implementing Network Policies in EKS

EKS supports network policies, but their implementation depends on the chosen networking

plugin. By default, EKS uses the AWS VPC CNI plugin, which has limited support for network

policies. To leverage advanced features, many users opt for a plugin like Calico.

3.2.1 Examples of Restrictive and Permissive Policies

Network policies can be either restrictive or permissive depending on the requirements. Let’s

explore examples of both:

● Restrictive Policy

Imagine a scenario where a web application pod should only receive traffic from a

specific frontend service. A restrictive policy might block all traffic except for the

allowed service.

● Permissive Policy

In a development environment, you might want to allow most traffic but block a few

specific types. For instance, you could permit all ingress traffic but restrict egress traffic

to certain external domains.

3.2.2 Steps to Implement Network Policies in EKS:

● Enable Network Plugin: Install a plugin like Calico if your use case requires advanced

network policy capabilities. This involves deploying the plugin as a Kubernetes

daemonset.

● Define Policies: Write YAML manifests to create network policies tailored to your

needs.

● Test Policies: Verify the effectiveness of your policies by testing pod communication

and observing how traffic is allowed or denied.

Distributed Learning and Broad Applications in Scientific Research 611

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

● Monitor & Audit: Use monitoring tools to ensure policies are working as intended

and to identify any misconfigurations.

3.2.3 Tools Like Calico for Advanced Policy Management

Calico is one of the most popular tools for managing Kubernetes networking and network

policies. It extends Kubernetes’ native capabilities by introducing features like:

● Network flow logs for auditing traffic patterns.

● Advanced policy options (e.g., DNS-based policies).

● Integration with external systems for managing policies across hybrid environments.

Using Calico with EKS is straightforward. Once installed, you can write Calico-specific

policies that go beyond Kubernetes’ native features, allowing for greater control and visibility.

3.3 Benefits & Limitations of Network Policies

3.3.1 Benefits:

● Scalability: Policies scale with the cluster, making them suitable for dynamic, large-

scale environments.

● Enhanced Security: Network policies enforce strict communication rules, minimizing

attack surfaces.

● Compliance: They help meet regulatory requirements by restricting sensitive data

flows.

● Fine-Grained Control: Policies can be as broad or specific as needed, supporting

complex environments.

3.3.2 Limitations:

● Performance Impact: In highly restrictive setups, enforcing policies can introduce

network overhead.

● Plugin Dependency: Advanced policies require third-party plugins like Calico, which

may add complexity.

● Limited Visibility: Debugging network issues can be challenging without the right

monitoring tools.

Distributed Learning and Broad Applications in Scientific Research 612

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

● Steep Learning Curve: Crafting effective policies demands a solid understanding of

Kubernetes networking.

4. Service Mesh for Network Isolation

4.1 What is a Service Mesh?

A service mesh is an infrastructure layer designed to handle service-to-service communication

in a microservices architecture. It operates as a dedicated networking layer that sits between

application services, abstracting complex communication requirements and ensuring

security, observability, and traffic management.

Imagine a microservices application with dozens (or even hundreds) of services interacting

with each other. Managing these connections can quickly become overwhelming. A service

mesh helps by providing consistent control over service communication, making it easier to

enforce policies, monitor traffic, and secure interactions.

4.1.1 Service Mesh in Kubernetes Networking

Networking is fundamentally complex due to the dynamic and ephemeral nature of pods,

services, and deployments. Traditional networking techniques—such as static IPs or load

balancers—do not align well with Kubernetes' fluidity. Kubernetes provides basic tools like

network policies to manage traffic, but these are often insufficient for advanced use cases.

This is where a service mesh shines. Acting as an abstraction layer, it injects sidecar proxies

(small, lightweight proxies deployed alongside each service container) to manage all inbound

and outbound traffic. These proxies form the backbone of the service mesh and provide

capabilities like:

● Security: Implementing features such as mutual TLS (mTLS), traffic encryption, and

access control.

● Traffic management: Controlling how requests flow between services, including load

balancing and retries.

● Service discovery: Automatically identifying and routing traffic to the correct services.

Distributed Learning and Broad Applications in Scientific Research 613

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

● Observability: Offering deep insights into communication patterns through

monitoring and tracing.

4.2 How Service Meshes Ensure Isolation?

For multi-tenant environments in EKS, ensuring proper network isolation is paramount to

prevent one tenant from accidentally or maliciously accessing another’s resources. Service

meshes like Istio and Linkerd are equipped with features that enhance network isolation:

4.2.1 Fine-Grained Access Control

Service meshes provide granular control over which services can communicate. Policies can

be defined at various levels, such as:

● Allowing communication only between specific namespaces or tenants.

● Restricting access based on service identity or request metadata.

This capability ensures that a tenant's services cannot inadvertently connect to another

tenant’s resources, even if they are in the same cluster.

4.2.2 Mutual TLS (mTLS)

mTLS is a security protocol that ensures traffic between services is encrypted and

authenticated. In a multi-tenant cluster, this is critical for preventing eavesdropping and

unauthorized communication. With mTLS:

● Each service is assigned an identity, and certificates are issued for verification.

● Traffic between services is encrypted, ensuring confidentiality.

● Services can only communicate if they mutually trust each other’s identities, enforcing

strict communication boundaries.

For instance, Istio enables mTLS by default once configured, creating a secure communication

layer without requiring developers to modify their application code.

4.2.3 Traffic Encryption

Distributed Learning and Broad Applications in Scientific Research 614

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Beyond mTLS, service meshes encrypt all traffic in transit. This encryption ensures that

sensitive data remains protected even if it traverses untrusted networks or is intercepted by

malicious actors.

4.2.4 Observability & Monitoring

Visibility is crucial for identifying and resolving networking issues. Service meshes provide

built-in tools for monitoring traffic flows, tracking request latencies, and analyzing errors.

This observability helps cluster administrators ensure that tenants remain isolated and that

no unauthorized communication occurs.

4.3 Linkerd vs. Istio: Features for Isolation

Istio and Linkerd are two popular service mesh implementations, each offering unique

strengths.

● Linkerd: A lightweight and performance-oriented service mesh, Linkerd prioritizes

simplicity and ease of use. It excels in scenarios where performance and minimal

resource usage are critical. While it may lack some of Istio's advanced features, Linkerd

still provides robust isolation with mTLS and basic policy enforcement.

● Istio: Known for its extensive feature set, Istio is highly customizable and suitable for

complex environments. It provides advanced traffic management capabilities,

sophisticated policy enforcement, and rich observability features. However, this

complexity can also make Istio harder to configure and maintain.

Both tools are capable of providing strong network isolation, and the choice often depends on

the specific needs of the organization.

4.3.1 Service Mesh vs. Network Policies

While service meshes offer a comprehensive approach to networking, Kubernetes also

provides network policies, which allow administrators to define rules for controlling traffic

flow at the network level. Comparing the two approaches helps clarify when to use each:

Network Policies

Distributed Learning and Broad Applications in Scientific Research 615

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

● Operate at the Kubernetes level and control traffic at the IP and port level.

● Are simple and lightweight, making them ideal for basic traffic restrictions (e.g.,

allowing traffic only within a namespace or blocking external traffic).

● Lack higher-level features such as mTLS, advanced traffic routing, or deep

observability.

Service Mesh

● Operates at the application level, managing communication between services using

layer 7 protocols (HTTP, gRPC, etc.).

● Provides rich features like mTLS, encryption, retries, and traffic splitting.

● Enables detailed telemetry and monitoring for debugging and performance

optimization.

4.3.2 Complementary Use Cases

Network policies and service meshes are not mutually exclusive—they can complement each

other. For example, you can use network policies to enforce basic isolation at the cluster level

while using a service mesh for finer-grained application-level control and enhanced security

features.

4.3.3 When to Use Each

● Use network policies for lightweight, foundational network isolation when the cluster

has minimal communication requirements or the service mesh is not in place.

● Use a service mesh when you need advanced features, such as secure service-to-

service communication, complex traffic control, and detailed observability.

5. Combining Network Policies & Service Mesh

When managing a multi-tenant Amazon Elastic Kubernetes Service (EKS) cluster, one of the

primary challenges is ensuring robust network isolation between tenants. By combining

network policies and service mesh, organizations can achieve a layered security model that

enhances both control and flexibility. This approach not only ensures compliance but also

Distributed Learning and Broad Applications in Scientific Research 616

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

minimizes risks in shared environments. Let’s explore how these two technologies can work

together, why they complement each other, and how they can be implemented effectively.

5.1 Understanding the Synergy: Network Policies & Service Mesh

Network policies and service mesh operate at different layers of the network stack, providing

complementary capabilities.

● Service Mesh: Advanced Layer 7 Controls

○ By analyzing HTTP headers, for example, a service mesh can enforce policies

based on user identity or service type, rather than just IP addresses.

○ Service mesh, like Istio or Linkerd, operates at Layer 7, focusing on application-

layer communications. It provides capabilities such as traffic encryption,

request routing, and authentication between services.

● Network Policies: Fine-grained Layer 3/4 Controls

○ You can use network policies to block all inbound traffic to a namespace except

from specific trusted sources. This is crucial in multi-tenant setups where

tenants should not have visibility into each other's network traffic.

○ Kubernetes network policies manage traffic at the IP and port level, operating

at Layers 3 and 4 of the OSI model. They dictate which pods or services can

communicate with each other.

Together, these technologies create a multi-layered approach to securing EKS clusters.

Network policies handle the coarse-grained segmentation at the network layer, while service

mesh applies granular policies at the application layer.

5.2 Enhanced Security Through Layered Controls

The combination of network policies and service mesh offers significant advantages:

● Comprehensive Observability: Service mesh often includes monitoring tools, offering

insights into traffic patterns and potential threats that network policies alone cannot

detect.

Distributed Learning and Broad Applications in Scientific Research 617

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

● Zero Trust Networking: With network policies controlling traffic at a broad level and

service mesh handling detailed, identity-based policies, you can establish a zero-trust

security model.

● Improved Defense-in-Depth: Network policies act as the first line of defense,

ensuring only necessary traffic reaches its destination. The service mesh adds a second

layer by inspecting and controlling communication at the application level.

● Resilience Against Misconfigurations: If a network policy is overly permissive or

misconfigured, service mesh policies can provide an additional safety net.

5.3 Strategies for Implementing Network Policies & Service Mesh in EKS

When deploying these technologies together, follow a clear strategy to ensure seamless

integration and optimal results:

● Start with Network Policies:

○ Define namespace boundaries and restrict pod communication.

○ For example, use Calico to create policies that block all traffic except what is

explicitly allowed. Begin with deny-all rules and gradually open up required

paths.

● Align Policies Across Layers:

○ Avoid conflicts between network policies and service mesh rules by carefully

planning their scopes. For instance, network policies might handle tenant

isolation, while service mesh enforces user-level access controls within each

tenant.

● Integrate a Service Mesh:

○ Deploy a service mesh like Istio for handling advanced traffic management and

encryption.

○ Configure mutual TLS (mTLS) between services to ensure encrypted and

authenticated communication.

● Use Automation:

○ Tools like Terraform or Helm can streamline the deployment of both network

policies and service mesh configurations.

Distributed Learning and Broad Applications in Scientific Research 618

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

○ Automating policy updates reduces human error and ensures consistency

across the cluster.

5.4 Real-World Examples

Many organizations have successfully adopted this layered approach in their EKS clusters:

● SaaS Providers: A SaaS provider hosting multiple customer instances on the same EKS

cluster used Calico network policies to block inter-tenant communication. Istio’s traffic

shaping allowed them to prioritize requests from premium customers during high

traffic periods.

● E-Commerce Platforms: A large e-commerce company implemented network policies

to isolate customer data processing services from internal analytics systems. They used

Istio to enforce stricter API access controls based on user roles, ensuring compliance

with GDPR.

● Financial Institutions: A bank running microservices in EKS employed network

policies to prevent lateral movement of threats. Simultaneously, they used a service

mesh to encrypt all communication, ensuring sensitive transactions were secure.

5.5 The Future of Layered Security in EKS

Combining network policies with a service mesh isn’t just about security—it’s about creating

a flexible, future-proof foundation for your multi-tenant EKS clusters. As Kubernetes evolves,

these tools will likely become even more integrated, offering richer controls and easier

management.

By leveraging both technologies, you can achieve a balance between isolation and

collaboration, enabling tenants to operate securely while sharing the same infrastructure. The

key lies in thoughtful implementation and ongoing refinement to meet the unique needs of

your workloads.

6. Best Practices for Network Isolation in Multi-Tenant EKS Clusters

Multi-tenant architectures are increasingly common, especially with Kubernetes-based

solutions like Amazon Elastic Kubernetes Service (EKS). While multi-tenancy can be cost-

Distributed Learning and Broad Applications in Scientific Research 619

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

effective and resource-efficient, it also introduces challenges, particularly around network

isolation. Ensuring that tenants are securely separated is critical to maintaining data security,

compliance, and operational reliability.

This guide dives into best practices for achieving robust network isolation in multi-tenant EKS

clusters. We'll explore namespaces and tenant segregation, configuring IAM roles, monitoring

and auditing traffic, and troubleshooting common challenges—all in an approachable and

practical tone.

6.1 Setting Up Namespaces & Tenant Segregation

6.1.1 Namespaces: The First Layer of Segregation

Namespaces in Kubernetes provide an easy and effective way to logically divide resources

within a cluster. Each tenant can be assigned their own namespace, creating a virtual

boundary that isolates their workloads.

6.1.2 Key Considerations:

● Network Policies: Leverage Kubernetes Network Policies to control traffic flow

between pods in different namespaces. For example, you might restrict pods in one

tenant’s namespace from communicating with another tenant’s resources.

● Resource Quotas: Apply resource quotas to namespaces to ensure tenants don’t

monopolize cluster resources like CPU, memory, or storage.

6.1.3 Implementation Tips:

● Ensure tenants have role-based access control (RBAC) permissions scoped to their

namespace to prevent unauthorized access to other tenants’ resources.

● Use standardized naming conventions for namespaces (e.g., tenant-A-namespace).

6.2 Configuring IAM Roles for Tenants

6.2.1 The Role of IAM in EKS

Distributed Learning and Broad Applications in Scientific Research 620

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

AWS Identity and Access Management (IAM) plays a pivotal role in securing multi-tenant

EKS clusters. By assigning distinct IAM roles to each tenant, you can fine-tune their access to

AWS resources, ensuring they operate within strict boundaries.

6.2.2 Best Practices for Tenant-Specific IAM Roles:

● Pod Identity with IAM Roles for Service Accounts (IRSA): Associate IAM roles with

Kubernetes service accounts. This enables tenants’ pods to securely access AWS

services without needing static credentials.

● Granular Permissions: Define policies that grant only the minimum necessary

permissions. For example, a tenant’s IAM role should allow access to their S3 bucket

but not others.

● Separate AWS Accounts for Critical Resources: In highly sensitive environments,

consider placing tenants’ AWS resources in separate accounts connected to the cluster

via cross-account roles.

6.2.3 Implementation Example:

● Create an IAM policy that grants access to a specific S3 bucket.

● Attach the policy to an IAM role.

● Use IRSA to bind the IAM role to the tenant’s Kubernetes service account.

This setup ensures that even if a pod is compromised, the IAM permissions remain limited to

the tenant’s resources.

6.3 Monitoring & Auditing Traffic

Network isolation isn’t just about prevention; it’s also about detection. Effective monitoring

and auditing help you quickly identify and respond to potential breaches or

misconfigurations.

6.3.1 Tools for Traffic Monitoring:

● Kubernetes Audit Logs:

○ Use these logs to detect unauthorized actions, such as a tenant attempting to

modify another tenant’s namespace.

Distributed Learning and Broad Applications in Scientific Research 621

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

○ Kubernetes audit logs provide a detailed record of actions within the cluster,

including API calls, resource changes, and access attempts.

● AWS VPC Flow Logs:

○ Capture and analyze IP traffic flowing in and out of your VPC.

○ Use these logs to detect unusual patterns, such as unexpected cross-tenant

communication or traffic to unapproved destinations.

○ Consider integrating Flow Logs with tools like Amazon CloudWatch Logs

Insights for advanced querying.

● Third-Party Monitoring Solutions:

○ Tools like Datadog, Prometheus, or Splunk can provide deeper insights into

network behavior and application performance.

○ Ensure they’re configured to respect the logical boundaries of your tenants.

6.3.2 Auditing Practices:

● Incident Response Plans: Have a predefined process for responding to anomalies

detected during audits. This may include isolating affected namespaces or revoking

specific IAM permissions.

● Periodic Reviews: Regularly review network policies, IAM roles, and resource

configurations to ensure they align with your isolation requirements.

6.4 Troubleshooting Common Issues

Even with the best practices in place, issues can arise. Here are some common problems and

how to address them:

● Pods Communicating Across Namespaces Unexpectedly

Cause: A missing or misconfigured Network Policy.

Solution: Verify that each namespace has an appropriate Network Policy in place. Use

tools like kubectl describe networkpolicy to debug and adjust as needed.

● Tenant Pods Failing to Access AWS Services

Cause: Misconfigured IAM role or IRSA binding.

Distributed Learning and Broad Applications in Scientific Research 622

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Solution:

○ Check if the correct IAM role is associated with the tenant’s service account.

○ Ensure the policy attached to the IAM role grants the necessary permissions.

● Overlapping Resource Usage

Cause: Lack of resource quotas in namespaces.

 Solution: Apply resource quotas to ensure tenants cannot consume more resources

than allocated.

● Performance Bottlenecks in Monitoring Tools

Cause: Overwhelming volume of log or flow data.

Solution:

○ Use sampling or filtering techniques to reduce log noise.

○ Focus on high-risk traffic, such as cross-namespace communication or external

traffic.

6.5 Additional Tips for Success

● Standardize Configurations: Use tools like Helm charts or Terraform to standardize

and automate tenant configurations, reducing the risk of manual errors.

● Regular Updates: Keep your Kubernetes version, AWS CLI, and associated tools up

to date. Newer versions often include security improvements and bug fixes.

● Tenant Education: Educate tenants about how the isolation model works and their

responsibilities, such as following namespace boundaries and adhering to resource

limits.

7. Conclusion

Securing multi-tenant environments within Amazon Elastic Kubernetes Service (EKS) clusters

is a complex yet crucial task, especially when balancing security, performance, and

Distributed Learning and Broad Applications in Scientific Research 623

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

operational efficiency. Throughout this exploration, we’ve highlighted the pivotal role of

network isolation in mitigating risks and safeguarding sensitive data in shared Kubernetes

environments.

Network isolation serves as a foundational layer of security, preventing unauthorized access

and minimizing the potential impact of breaches. Using Kubernetes-native network policies,

administrators can enforce fine-grained control over traffic between pods, namespaces, and

external services. This ensures that communication occurs only as explicitly intended,

reducing the attack surface.

On the other hand, service mesh solutions such as Istio or Linkerd enhance this isolation by

introducing features like traffic encryption, observability, and dynamic routing. These tools

operate at a higher abstraction layer, complementing Kubernetes network policies by

managing secure service-to-service communication and providing additional insights into

cluster behaviour.

7.1 Recommendations for Effective Network Isolation

Selecting the right combination of techniques depends on the specific needs and scale of your

EKS cluster. For smaller, simpler environments, leveraging Kubernetes network policies alone

may suffice. These policies are lightweight and directly integrated into the Kubernetes

ecosystem, offering a straightforward way to control traffic.

A service mesh can bring additional value to larger or more complex clusters by addressing

gaps that network policies cannot cover. For example, service mesh tools become

indispensable when managing cross-cluster communication or requiring end-to-end

encryption.

Distributed Learning and Broad Applications in Scientific Research 624

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

Combining these approaches provides robust security. Network policies act as the baseline,

ensuring minimum access privileges, while the service mesh layer offers advanced features to

enhance resilience and observability.

7.2 Looking Ahead: The Future of Kubernetes Networking

The Kubernetes ecosystem continues to evolve, with constant innovation in networking

solutions. Emerging tools and enhancements aim to simplify configuration, reduce resource

overhead, and improve interoperability with diverse infrastructure environments. Staying

informed about these developments is vital for maintaining secure and efficient clusters.

As workloads grow increasingly complex, the emphasis on adopting and adapting advanced

isolation techniques will only intensify. Organizations must regularly reassess their strategies,

ensure alignment with best practices, and incorporate the latest advancements to remain

resilient against evolving threats.

Network isolation is not a one-size-fits-all solution but a dynamic aspect of Kubernetes cluster

management. By thoughtfully combining the strengths of network policies and service

meshes, organizations can ensure their multi-tenant EKS clusters remain secure, scalable, and

ready for the demands of modern applications.

8. References

1. Truyen, E., Van Landuyt, D., Preuveneers, D., Lagaisse, B., & Joosen, W. (2019). A

comprehensive feature comparison study of open-source container orchestration frameworks.

Applied Sciences, 9(5), 931.

Distributed Learning and Broad Applications in Scientific Research 625

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

2. García-López, P., Sánchez-Artigas, M., Shillaker, S., Pietzuch, P., Breitgand, D., Vernik, G.,

... & Ferrer, A. J. (2019). Servermix: Tradeoffs and challenges of serverless data analytics. arXiv

preprint arXiv:1907.11465.

3. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C. C., Khandelwal, A., Pu, Q., ... & Patterson,

D. A. (2019). Cloud programming simplified: A berkeley view on serverless computing. arXiv

preprint arXiv:1902.03383.

4. Gade, K. R. (2018). Real-Time Analytics: Challenges and Opportunities. Innovative

Computer Sciences Journal, 4(1).

5. Rahman, J. (2019). Building QoS-aware cloud services (Doctoral dissertation, The University

of Texas at San Antonio).

6. Sayfan, G. (2019). Hands-On Microservices with Kubernetes: Build, deploy, and manage

scalable microservices on Kubernetes. Packt Publishing Ltd.

7. Chelliah, P. R., Naithani, S., & Singh, S. (2018). Practical Site Reliability Engineering:

Automate the process of designing, developing, and delivering highly reliable apps and

services with SRE. Packt Publishing Ltd.

8. Paladi, N. (2017). Trust but verify: trust establishment mechanisms in infrastructure clouds.

9. Haythornthwaite, C. (1996). Social network analysis: An approach and technique for the

study of information exchange. Library & information science research, 18(4), 323-342.

Distributed Learning and Broad Applications in Scientific Research 626

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

10. Williams, B., & Camp, T. (2002, June). Comparison of broadcasting techniques for mobile

ad hoc networks. In Proceedings of the 3rd ACM international symposium on Mobile ad hoc

networking & computing (pp. 194-205).

11. Younis, M., & Akkaya, K. (2008). Strategies and techniques for node placement in wireless

sensor networks: A survey. Ad Hoc Networks, 6(4), 621-655.

12. Gao, Z., Cecati, C., & Ding, S. X. (2015). A survey of fault diagnosis and fault-tolerant

techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE

transactions on industrial electronics, 62(6), 3757-3767.

13. Li, P., Kaslan, M., Lee, S. H., Yao, J., & Gao, Z. (2017). Progress in exosome isolation

techniques. Theranostics, 7(3), 789.

14. Dodt, H. U., Leischner, U., Schierloh, A., Jährling, N., Mauch, C. P., Deininger, K., ... &

Becker, K. (2007). Ultramicroscopy: three-dimensional visualization of neuronal networks in

the whole mouse brain. Nature methods, 4(4), 331-336.

15. Gade, K. R. (2018). Real-Time Analytics: Challenges and Opportunities. Innovative

Computer Sciences Journal, 4(1).

16. Marcu, T., & Mirea, L. (1997). Robust detection and isolation of process faults using neural

networks. IEEE Control Systems Magazine, 17(5), 72-79.

17. Gade, K. R. (2019). Data Migration Strategies for Large-Scale Projects in the Cloud for

Fintech. Innovative Computer Sciences Journal, 5(1).

Distributed Learning and Broad Applications in Scientific Research 627

Distributed Learning and Broad Applications in Scientific Research
Annual Volume 6 [2020]

© DLABI - All Rights Reserved
Licensed under CC BY-NC-ND 4.0

18. Gade, K. R. (2017). Migrations: Challenges and Best Practices for Migrating Legacy Systems

to Cloud-Based Platforms. Innovative Computer Sciences Journal, 3(1).

19. Komandla, V. Enhancing Security and Fraud Prevention in Fintech: Comprehensive

Strategies for Secure Online Account Opening.

20. Komandla, V. Transforming Financial Interactions: Best Practices for Mobile Banking App

Design and Functionality to Boost User Engagement and Satisfaction.

