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1. Introduction 

In 2021, $580 billion was spent on medicine manufacturing in the United States. As a result, 

medicine manufacturing is one of the most valuable industrial sectors in the United States, 

creating a process that serves as the gateway for creating pharmaceuticals that treat wide-

ranging diseases, from COVID-19 to cancer to prostate difficulties. In this process, compound 

molecules are generated through a series of complex chemical reactions that typically 

consume tremendous amounts of energy. At the same time, compound molecules generally 

have to go through purification processes to remove impurities. The purification processes 

target the removal of specific impurities while consuming additional energy. Most 

pharmaceuticals are produced through large-scale continuous manufacturing processes; 

therefore, improving the energy efficiency of these generic compounds can have a significant 

impact on overall energy savings. Recently, machine learning algorithms and problem-

solving methods, such as constrained optimization, deep reinforcement learning, and 

generative adversarial networks, have emerged to augment enterprise energy management, 

process efficiency, and self-consumption of renewable energy, thus facilitating the 

development of smart factories [1]. Among these algorithms and methods, reinforcement 

learning in combination with first-principles models provides a powerful framework to 

proactively produce timely and knowledgeable control actions under sudden market and 

process constraints. Since time is limited, thus only a representative subset of AI-driven 

solutions will be presented. 

To meet basic requirements for FDA approval, high-quality generics should contain a 

compound with 98% purity, a mean particle size of 10 microns, and over 90% crystallinity. 

The compound should also have a properly adjusted pH value from 3 to 5 to allow subsequent 

chromatographic purification through a packed column, which aims to keep the significant 

fraction of target compounds in columns while allowing impurities to pass through the 
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column. This sequential process forms a set of two consecutive manipulated variables 

(temperature and pressure) that centrally affect the process. 

1.1. Background and Significance 

Significant public and private investments in energy efficiency technology innovation, 

demonstration, and deployment have occurred in the medicine manufacturing sector in the 

U.S. While initial data on energy efficiency technology deployment has been collected, little is 

known about energy efficiency technology innovation or the time lags associated with 

commercialization of energy efficient technology advances in the process manufacturing 

sectors in general or medicine manufacturing in particular. Recently collected data sheds light 

on how energy efficiency technology that has been commercially deployed by manufacturing 

firms has been transferred from the lab bench to commercial operation, how long that process 

takes, and what major hurdles need to be overcome during that process [2]. 

Manufacturing has been defined as the transformation of inputs into products. Manufacturing 

inputs include land, raw materials, buildings and other capital assets, labor applied to the 

transformation, energy to power the transformation, and environmental inputs and sinks. 

Manufacturing products are deemed to be a good match for the market if they have the 

desired functionality and quality at an acceptable price. It seems rather straightforward, then, 

to define the efficiency of a manufacturing process (system) as the ratio of the desired outputs 

to the inputs applied to the transformation of those inputs into outputs. This yields an energy 

efficiency definition of the fraction of energy inputs not consumed or wasted in the 

transformation of inputs into outputs [3]. 

1.2. Research Objectives 

A comprehensive analysis of the existing state of AI and energy efficiency solutions employed 

by the U.S. pharmaceutical and biopharmaceutical industries will be conducted. The goal 

would be to identify current applications for AI technology in energy solutions and to identify 

challenges regarding industry adoption of AI for energy solutions. It will assess how 

implemented solutions are impacting energy efficiency and sustainability, review the state of 

relevant technologies and services available to U.S. pharmaceutical and biopharmaceutical 

companies, and identify AI models in use and fundamental technologies. 
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Following from this, an engineering assessment will be performed. Leveraging access to AI-

based solution providers, the goal will be to design an AI-driven energy efficiency, 

sustainability, and greenhouse gas emissions reduction solution specifically tailored to the 

needs of U.S. pharmaceutical and biopharmaceutical industries. The proposed solution will 

include applied AI technology stack, fundamental technologies, a workflow model, 

anticipated performance improvements and outputs, success metrics, and an outcome 

roadmap. 

Lastly, recommendations for technology and policy pathways will be put forth with the goal 

of enabling nationwide adoption and implementation expansion of AI-driven energy 

efficiency solutions by U.S. pharmaceutical and biopharmaceutical companies. These 

recommendations will encompass technology initiatives funded by pharmaceutical and 

biopharmaceutical companies or energy solution providers, policy initiatives implemented by 

the federal or state governments, and collaborative initiatives funded or jointly funded by a 

partnership of the aforementioned entities backed by the U.S. Federal Government. 

2. Overview of U.S. Medicine Manufacturing Industry 

The medicine manufacturing industry in the United States is a complex system of facilities 

and activities that produce, manufacture, and distribute medicinal drugs. The U.S. medicine 

manufacturing industry generates trillions of dollars in economic activity and employs 

millions of Americans. While some of the manufacturing facilities, activities, and workers are 

found in large urban areas, many are located in rural areas and small towns across the country. 

The industry is comprised of Veterans Affairs (VA) Medical Centers, Department of Defense 

(DoD) facilities, federally owned and operated Indian Health Service hospitals, small and 

large commercial pharmaceutical, biotechnology, and manufacturing companies. The 

industry also includes the medical care facilities of state systems for the mentally ill, 

developmentally disabled, and drug dependent. 

The U.S. food and drug regulatory system is a complex, multi-level and multi-action network 

of government organizations that work together to protect and promote the health of the 

consumer and the safety of the nation's food supply. Laws, regulations, and guidelines set the 

level of acceptability for the safety and efficacy of medicines and foods, and define the 

responsibilities and authority of the various organizations working within the system. 

Agencies of the government, such as the Food and Drug Administration, the Environmental 



Distributed Learning and Broad Applications in Scientific Research  303 
 

 
 

Distributed Learning and Broad Applications in Scientific Research 
Annual Volume 10 [2024] 

© DLABI - All Rights Reserved 
Licensed under CC BY-NC-ND 4.0 

Protection Agency, and the U.S. Department of Agriculture enforce laws, regulations, and 

guidelines. 

The U.S. medicine manufacturing industry generates trillions of dollars in economic activity, 

contributes billions of dollars in tax revenues to local, state, and federal governments, and 

employs millions of Americans in high-paying jobs. Most of these jobs cannot be outsourced 

because their performance requires being physically present to provide the needed service. 92 

percent of companies are small businesses that employ fifty or fewer workers. In many rural 

areas and small towns, the facilities, activities, and locally employed workers are the largest 

or sole employers. As a result, medicine manufacturing and dispensing can have profound 

impacts on the social, political, environmental, and economic activities of local communities. 

The medicine manufacturing industry is labor-intensive, relying primarily on the work of 

scientists, engineers, and support personnel, for over 60 percent of everything from 

formulation to distribution. 

2.1. Key Players and Stakeholders 

Focusing specifically on the major players and stakeholders within U.S. medicine 

manufacturing, such entities as pharmaceutical biotechnology firms, contract development 

and manufacturing organizations (CDMOs), contract research organizations (CROs), private 

equity firms, medical device manufacturers, large multibillion pharmaceutical companies 

(often within multinational conglomerates), and insurance companies/healthcare systems are 

involved. Evolving from traditional pharmaceutical manufacturing and research systems, 

such firms and organizations frequently design and produce experimental drugs or 

medications to seek and develop an FDA-approved new drug application (NDA) or biologics 

license application (BLA) [4]. Contract manufacturing or drug testing is generally followed 

until FDA approval, which is then acquired or partnered by the larger pharmaceutical firms 

for mass-market production. 

Such large multibillion-dollar pharmaceutical firms often contend with large budgets that 

make dangerous acquisitions of smaller biotech firms indiscriminate, incessantly seeking 

innovative experimental drugs due to pressure from active shareholders (abusing drugs for 

disorders with low competition), which has led systems of frequent “buy and kill” strategies 

(with drugs later discovered to be unsafe or ineffective) that are, as with a market more 

generally, further rent-seeking [5]. Moreover, as with the COVID pandemic, rapidly emerging 
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worldwide public health disasters exacerbate the cyclical trend of smaller biotechnology firms 

(grants, tax incentives, and later competitive buyouts from industry after substantial publicly 

funded research) becoming collateral damage once post-initial-funding results are exhibited. 

Understanding such key players and stakeholders is crucial to contextualize the 

implementation of AI-driven energy efficiency sectors across existing processes. 

2.2. Current Challenges in Energy Efficiency 

Energy efficiency has not kept pace with mounting social, environmental and economic 

pressures. In the past two decades, commercial buildings have generally become larger and 

more energy intensive, but investments in energy efficiency improvements have lagged. 

Hospitals, the most energy-intensive building type, have seen their energy savings slide from 

47% to 10% of annual purchased energy [2]. Barriers can be found across the chain of energy 

efficiency investments, from capital program development through project implementation. 

Missing from the systems approach is a tool for rigorously assessing the energy investment 

constraints and opportunities faced by a given hospital or systems of hospitals. 

In order to identify projects of concern, a “macro” picture of energy use and efficiency efforts 

should be developed. Such a profile should include some diagnosis or ratio of important 

metrics including the gallon water equivalent consumed annually per square foot and used 

in a benchmark similar to Energy Star scores to evaluate how a hospital is using energy 

inefficiently relative to others [6]. Doing so would allow one to see where action and 

benchmarking are needed. Once areas of action are suggested, a more “micro” or detailed 

examination of each facility or campus would be undertaken. Leveraging existing technology 

to optimize energy efficiency also represents a challenge to the healthcare system. While 

software and virtual audits are frequently available, their use is expensive and most hospitals 

do not leverage these resources. 

3. Fundamentals of Energy Efficiency in Manufacturing 

Energy efficiency refers to the reduction of energy consumption while maintaining the same 

level of satisfaction of energy services, i.e., providing similar levels of heating, cooling, 

lighting and transport [7]. The broad applicability of energy efficiency goes across various 

sectors, from households to industries, and large scale or communities. The increase of energy 

efficiency across a production process will reduce both the energy cost and the energy related 
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CO2 emissions of the respective process. The notion of energy efficiency has been around 

since the 1970s oil crisis, but not others have studied manufacturing energy efficiency, and 

more generally, industrial energy efficiency. 

Manufacturing is a term used to describe the process of converting raw materials into 

products through the fabricating and assembly of components. An anthropogenic energy 

system using non-renewable primary sources of energy currently supports this process, at an 

aggregated worldwide average energy intensity of about 5-10 MJ per $1 manufacturing value 

added. Energy is used to power several type processes and a variety of energy forms are 

consumed to accomplish it, such as electricity, natural gas and diesel fuel. Flexible 

manufacturing systems or factories achieve this process through the coordination of machines 

and conveyors in accordance with scheduling and control principles [8]. Typically, 

workplaces within the same facility execute coordinated operations and share resources such 

as energy and production machines among several products. Production scheduling denotes 

the choice of production sequences and resource allocation. 

3.1. Definition and Importance of Energy Efficiency 

Energy efficiency measures are defined as solutions or technologies that reduce energy 

consumption, production, or losses in equipment, systems, processes, processes, or facilities 

[2]. Energy-efficient solutions can save businesses, companies, and end-users a significant 

amount of money by reducing their energy bills and avoiding rising costs in the energy 

market; they can also reduce a business’s carbon footprint and improve its environmental 

reputation. Thus, energy efficiency plays a fundamental role in ensuring that enough energy 

is available for a society to function and flourish. 

The manufacturing landscape of the United States has a high potential to develop energy-

efficient solutions, systems, and technologies. Industrial energy efficiency measures 

implemented in the U.S. have resulted in significant savings, as $1.28 trillion has been saved 

in service sector manufacturing for the period of 1990–2010. Among the manufacturing sectors 

in the U.S., petroleum & coal products, wire and cable, and food industries consume the most 

energy. Thus, the implementation of energy efficiency measures can exploit enormous 

potential across the U.S. manufacturing landscape and fuel economic growth. In recent years, 

the relatively teen and vast commercialization of artificial intelligence (AI) technologies have 
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created a novel opportunity to explore the industrial energy efficiency potential across 

manufacturing sectors [1]. 

3.2. Key Metrics and Indicators 

Key metrics and indicators relevant to energy efficiency, often referred to as Key Performance 

Indicators (KPIs), are the essential quantitative measures used to evaluate, monitor, and 

report on energy usage within a facility, process, or system. KPIs associated with energy 

efficiency cover a range of issues such as energy responsiveness, energy sustainability, energy 

benchmarking and performance assessment, energy used per production output, renewable 

energy generation rates, and energy consumption [9]. These indicators aim to measure key 

issues common to all manufacturing plants. In addition, specific indicators are proposed to 

cover time durations, yields, and quality, with a suggested harmonization of definitions. 

With increasing interest and effort being placed on energy efficiency in facilities across the 

manufacturing sector, there is a need to assess the impact of these efforts. To this end, a set of 

performance metrics has been developed that enables facilities to quantify the current energy 

performance of their manufacturing processes and systems. This will help facilities measure 

and track energy performance improvement both before and after energy efficiency initiatives 

are implemented. Metrics relevant to energy efficiency in manufacturing will be discussed, 

including an indication of how to calculate each metric, its application, limitations, and 

consideration for data availability. This work is pivotal to the understanding, development, 

and deployment of AI technologies focused on energy optimization across the U.S. 

manufacturing sector, especially within the context of larger federal initiatives [2]. 

4. AI Technologies in Energy Efficiency 

[1] [10] 

4.1. Machine Learning Algorithms for Energy Optimization 

Artificial intelligence (AI) can help energy management in manufacturing with data-driven 

energy performance prediction, monitoring, diagnosis, and control algorithms. Machine 

learning (ML) algorithms are systematic, programmable, AI-based solutions for learning 

predictive and diagnostic patterns from historical datasets; they can revolutionize the 

management of energy use and efficiency in manufacturing with cost-effective, flexible, and 
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scalable tools [1]. Such solutions can address the escalating concerns for energy performance 

in manufacturing in a systematic, automated, and continuous manner. Energy management 

solutions based on AI-driven algorithms can be implemented to engage employees, identify 

energy performance gaps, monitor excessive energy consumption, and find energy saving 

opportunities throughout the life cycle of manufacturing. The growing awareness of energy 

performance improvement and the recent developments in smart manufacturing are two 

other important drivers for the implementation of AI-driven energy management solutions. 

Currently, energy performance prediction, monitoring, diagnosis, and control in 

manufacturing are conducted with traditional, complicated, inflexible, and inefficient 

methods, such as spreadsheets, static analytical models, and expert-based systems. These 

methods rely on the expertise and experience of manufacturing data analysts and process 

engineers; however, their performance largely depends on factors like staffing, workload 

distribution, and the cost of analytical tools. Such limitations have been exacerbated by the 

emerging wave of “smart manufacturing,” which is expected to demand more elaborate, 

extensive, and effective manufacturing monitoring, diagnosis, and control solutions [11]. AI-

driven software solutions with data analytics capabilities can be used to identify the 

relationships between energy performance and underlying factors, such as product types, 

production schedules, manufacturing technologies, and energy supply types. Understanding 

these relationships is crucial for the identification and assessment of energy saving 

opportunities; they can guide the selection of appropriate solutions for energy performance 

improvement, such as investment in new technologies and process reorganization. 

4.2. IoT and Sensor Technologies 

A crucial element of AI-driven energy efficiency solutions are IoT and sensor technologies, 

which comprehensively gather and process data related to energy consumption and 

production [12]. This is done with the primary focus on either machinery, equipment, the 

overall system, or combinations thereof. The data generation and collection process is broken 

down into two key stages: (1) raw data gathering, including types of data commonly collected, 

and (2) data preprocessing, including detected data anomalies and the processes of sensory 

data normalization and verification. The collected data is a baseline around which the 

proposed AI models are trained and tested against. Energy efficiency solutions, in 

manufacturing, are framed as problems of maximizing energy efficiency (savings) while 
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respecting mandatory technical and operational constraints; they are envisaged as a 

combination of AI-based models and enterprise resource planning (ERP) systems [13]. 

Manufacturing often requires a specific sequence of activities to produce the desired output 

and can involve multiple processing lines, each with its batching policy. From final products 

back through intermediary and raw materials, manufacturing generates by-products and 

wastes, also called pollutants, which can be energy-related emissions, as in fossil fuel 

technologies, or in terms of co-products in biofuel production environments (bioethanol, 

biodiesel, syngas). A key aspect of the proposed solutions is the temporal aggregation of 

production data, based on the establishment of a time mark as the process of formulating a 

specific industrial by-product sequence is triggered. A broader identification and analysis of 

data models are documented, focusing on the reviewed types of energy efficiency solutions 

in food and beverage manufacturing. 

5. Applications of AI-Driven Energy Efficiency Solutions in Medicine Manufacturing 

Focusing specifically on medicine manufacturing, the practical applications of AI-driven 

energy efficiency solutions in the industry are examined. From a practical standpoint, these 

solutions can be deployed to optimize individual components of specific production 

processes. Common examples include optimizing the energy efficiency of cleanroom air 

temperature and humidity control, but also, for example, of non-cleanroom air temperature 

control in tablet production (granulation) [5]. How generative AI can promote sustainability 

will be investigated concerning how human-machine (or AI) cooperation impacts design 

processes. Cleanroom design is complex and often made offshores which can promote 

greenhouse gases (GHG) emissions in the construction supply chain. The co-generation of 

cleanroom designs utilizing generative AI could help to promote an LCA methodology to 

design more environmentally friendly cleanrooms that consume less energy in operation, 

which is to be researched [6]. Foundry services are essential to pharma companies, like tablet 

coating, that typically run batch production within cleanrooms. There is a need for energy 

efficiency solutions for such services in the pharma industry, which is mostly at the beginning 

of digitalization and AI adoption, to inspire AI-driven energy efficiency solutions for the 

service providers. 

5.1. Optimizing HVAC Systems 
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Large heating, ventilation, and air conditioning (HVAC) systems are energy-intensive assets 

in buildings operated by energy services companies (ESCOs), private energy service 

contractors (ESCos), and building managers. Because of this energy usage, many HVAC 

systems in large buildings are equipped with a building automation system (BAS) that 

schedules system operations, collects sensor data, and controls equipment [14]. To capitalize 

on pre-existing controls and data, recent research has focused on indirect data-driven 

optimization methods. These approaches use system log or trend data collected by a BAS to 

optimize pre-existing control set points. The results suggest that energy savings on the order 

of 2–35% are possible at specific sites and that data-driven approaches can be broadly 

implemented with existing BAS and trained personnel. While indirect data-driven methods 

are broadly applicable, they only adjust a system’s existing control sequences (including both 

setpoints and logic). Broadly adapting more advanced direct optimization algorithms (for 

example, identifying new optimal schedules) would require both site-specific control 

strategies and significant expertise. 

Direct and indirect data-driven optimization methods were considered for a continuous 

process HVAC system serving a pharmaceutical manufacturing facility involved in the 

product’s assembly and labelling. An indirect approach was employed for the large multi-

zone VAV HVAC system in phase I, capitalizing on the building’s existing controls and 

readily available trend data. The indirect optimization approach is explored in detail later, 

along with the methodology and performance of the optimized HVAC controls. For phase II, 

initial modeling was conducted on the same building and HVAC system using a more 

complex state-space model representation. Interest lies in the implementation of a control-

oriented model predictive controller (MPC). Because implementation of a direct method (such 

as MPC) requires more complex system models, detailed assumptions and methodologies are 

presented. Model calibration (or tuning) steps for parameter estimation and implementation 

of an MPC in a lab environment will be discussed in further detail. The data-driven 

optimization process may be generalized to other HVAC systems and buildings (any building 

equipped with a type of BAS) that have readily available operating data. 

5.2. Smart Lighting Solutions 

Lighting accounts for a substantial percentage of the total energy use associated with a facility 

or building. In the selected medicines manufacturing facility, analysis shows that lighting 
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contributes to 30% of total energy-related expenses. Literature shows a strong potential for 

energy consumption reduction via the introduction of intelligent lighting systems. Investment 

in smart lighting includes savings in energy expenses and enhancement of workspace 

functionality [1]. Artificial intelligence technologies hold significant promise for the 

automation of various tasks as compared to ordinary control schemes. Specifically, in lighting 

systems, artificial intelligence provides potential reduction in energy consumption via 

innovative luminaire applications, enhanced space operation insights, and different levels of 

automation. 

The design of AI-driven smart lighting solutions includes a lighting control system designed 

for adapting the working light level and responding to people’s presence. The scheme 

includes illuminance and occupancy sensors, gateways, and luminaires [15]. The lighting 

control system was extended by additional functions such as daylight harvesting control, 

hourly summarizing, and processing of sensor signals. The first task consists of filtering these 

signals and determination of properties like mean counts, standard deviation, peak counts, or 

hysteresis in order to have new variables and avoid strong fluctuations. 

6. Case Studies and Success Stories 

In late 2016, to address intelligent energy efficiency and sustainability needs, a company 

acquired more remote energy management facilities related to food production after 

developing a state-of-the-art AI-driven manufacturing system for medicine production. Early, 

conservative energy modeling and AI integration were achieved by introducing one AI team 

with one analyst. A bottleneck detected with one gas-fired boiler at one of the ten industrial 

sites was resolved with a simple solution involving a small adjustments and positioning one 

temperature sensor into the boiler feedwater. First energy savings by AI-driven operation of 

this particular boiler were over 20%. In 2018, the first use case of introducing a newly AI-based 

data centralization and modeling system to management was established, resulting in an i4 

auction for one utilization subsidiary, including a published company-wide patent. After this, 

in close cooperation with the company and other researchers, AI business models and 

solutions are being developed, implemented and harvested. AI-driven operation of three 

boilers of the same type stabilizing the high demand forecasting error have been innovative 

success factors. After involving a teacher from a local AI education company, AI building 

modeling of energy consumption was enhanced, achieving –20% cost savings. AI-driven 
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forecasts of new concurrently operated fuel-switch boiler conditions have led the company to 

one of the first projects of deployed AI control in district heat systems in the Nordic countries. 

Automated modeling of energy consumption determined by production objectives was the 

first new tool for decision-making concerning plant operations. 

Experiences and outcomes from these developments and implementations concerning state-

of-the-art technologies, AI-driven data utilization and modeling, AI-driven technologies and 

energy efficiency in sustainable production will be presented. AI models and actions and 

energy savings achieved will be disclosed in detail. First AI-driven energy models of district 

heat utility, complemented with district heat processes, energy and ambient temperature 

utilization models to understanding energy consumption are being developed. AI energy 

modeling of a data center computing energy consumption is another pilot utilizing new deep 

learning and ensemble techniques, allowing unlimiting future AI model extension 

possibilities. Targeting with published journals on the impact of AI energy modeling on 

sustainability in Finland and worldwide journal articles on the impact AI may have on 

technical and regulatory challenges in the energy sector. 

6.1. Implementation at Pfizer 

The AI technologies selected for implementation at Pfizer’s Freeland site included the initial 

deployment of Edge-Driven Deep Learning System (DL) technology to reduce equipment 

energy consumption accompanied by additional supporting projects including the 

development of a digital twin for Manufacturing Execution Systems (MES) batch monitoring 

and analysis, as well as implementation and expansion of 24/7 monitoring services for 

equipment and process data. The deployment of AI technologies at the Freeland site led to a 

range of benefits over a rollout schedule of 12 months, including reduced power consumption 

and greenhouse gas (GHG) emissions, as well as maintenance of required product quality 

metrics. Additionally, AI technology implementation was able to capture broader operational 

and procedural benefits across Freeland, notwithstanding the focus initially placed on energy 

efficiency gains and gradual ANE effect realization. In the first half of 2022, the annual target 

energy expenditure reduction of $487K was estimated based on results observed through 

model simulations. Aggregate energy consumption savings after deployment of the DL model 

technology and processes monitoring were projecting at 1686 MWh for 2022 (5.7% of annual 

total CEF site energy use). Total financial savings projected through further scaling of DL 
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models is estimated to exceed $3.5M by 2025 (approximately 12.5% of annual predicted CEF 

site expenditures) [3]. As a multinational pharmaceutical corporation, Pfizer is a partner in 

the worldwide end-user pharmaceutical manufacturing supply chain and its facilities operate 

in every corner of the globe, leading to a multi-domain energy efficiency optimization 

challenge. As such, a comprehensive strategy was developed to design and scale AI models 

for energy efficiency across 200 (pharmaceutical production) sites, with Freeland identified as 

a spearhead for the technology and subsequently as a leader in model design and deployment 

at similar plants [5]. 

6.2. Energy Savings and Environmental Impact 

A solution for energy efficiency, 132 devices selected by the U.S. Food and Drug 

Administration were operated in stream mode on the AI platform. Clear Lot and 20/20 ML 

algorithms were developed that monitored efficiency data of important components in real-

time across multiple platforms and budgets. More than 550,000 kilowatts of energy were 

adjusted or eliminated in the first 16 months (242,000 dollars of avoided costs). With 58 plants, 

the real-time analytics reduced energy and engineering labor workload by >80%. Future 

consideration includes growth in real-time energy data monitoring of all major consumers; 

encouraging culture shift with clinical staff to increase providers’ data quality; reduction of 

the duration (5 weeks) of planned studies; increase AI’s efficiency management to cover the 

pacemaker; and automotive device engineering processes [15]. 

The application of AI-driven solutions expanded beyond energy efficiency. Already, new 

solutions were adopted: AI for identifying positive endoscopy findings across pathology 

indications (GI, ENT, Bronchus, SMaS); AI to automatically identify and cue procedural 

endpoints for endoscopy to drive procedural safety (no missed findings or images); making 

smartwatch data (e.g., Gait phase, arrhythmias) translatable with confidence to massless MRI 

devices; using AI and Rocket Chat to develop a Fiver-like upwork for senior healthcare 

freelancers; and AI deploying intelligent chatbots on COVID-19 FAQs [16]. 

7. Challenges and Limitations 

The implementation and deployment of AI algorithms, irrespective of application, are 

associated with challenges and limitations. AI algorithms consume substantial amounts of 

data for training and testing [17]. For AI energy optimisation algorithms in medicine 
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manufacturing, the challenge is twofold. The medicine manufacturing process must be 

mapped out on production lines, and energy consumption needs to be estimated with a 

sufficient time resolution required for plotting load profiles (i.e., a plot of a device’s power 

consumption over time). New energy estimation techniques must be deployed, which offer 

adequate model accuracy while limiting modelling complexity. Another critical challenge 

with AI algorithms is their training requirements, and the devices must operate in a normal 

mode of sampling, where operation variables are relatively stable (e.g., temperatures, 

pressures, and flow rates) [6]. Otherwise, when operating outside of normal states (e.g., 

during maintenance work), representative data for training will not be acquired. 

Other challenges that should not be overlooked are the implementation of protective 

cybersecurity concepts, including edge processing, cryptographic tokenisation, data 

anonymisation, federated learning, and edge AI to prevent data hacks. Unfortunately, these 

protective concepts often hinder the ‘plug-and-play’ facility of AI algorithms, as they impose 

certain preconditions for data transmission. To avoid compromising device manufacturers’ 

competitive advantages, the equipment must be maintained and repaired by original 

equipment manufacturers. With AI algorithms being used as intellectual properties, care must 

be taken to ensure that the AI systems learnt from production datalog storage systems are not 

reinvented through data digging. 

7.1. Data Privacy and Security Concerns 

Privacy and data security has emerged as an issue of critical concern, and there is high 

expectation that AI-driven solutions can help healthcare organizations better protect sensitive 

information [18]. However, bringing AI-driven solutions to the perimeter of the organization 

where data interoperability has largely been left to 3rd party systems inevitably raises 

questions about who has access to the data, how it is protecting against corruption, and what 

the data states in the first place. There is a need to rightly ask these questions prior to 

implementation, not retroactively after a problem occurs. Fortunately, Dixon and others have 

already developed a positive checklist of the carefully considered questions and criteria that 

organizations should expect answers to regarding the integrity, protection, and custodianship 

of their data prior to deploying outsourcing solutions, including AI. Just to recapture their 

points quickly: 1. Understandable ********** – Does the company explain its service in an 

understandable way without overly-inflated techno-speak or obscure jargon? 2. Practical 
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control – Does the organization have practical control over its own data and how it is used? 

3. Accountability – Can the organization run audit checks to hold the company accountable 

or to identify possible weak points in the system? 4. External partners – Who does the 

company itself share or sell the data to? 5. Transparency – Does the organization have a legal 

right to know, scrutinize and assess how its data is shared, held, and used? 6. Data protection 

– How does the company guarantee the security of the organization's data? 7. Accessible 

service – Would the organization be able to easily exit the service and take its data with it? 

[19]. 

7.2. Integration with Existing Infrastructure 

Integrating AI-driven energy efficiency solutions into an organization’s existing infrastructure 

is a complex task. These solutions employ various advanced technologies that help organize 

energy usage in the best possible way, such as predictive energy management software, 

advanced measurement, and control systems, advanced HVAC adjustment control, among 

others. An important thing to notice is how to integrate these technologies no matter how 

complex they are [20]. Integration with existing infrastructure can be approached in three 

steps: 

1. **Testing Before Implementing**: To ensure that the energy solution will be a good fit for 

the medicine manufacturing facility, it can be tested on a similar site before relevant 

investments are made. Use matters to improve an AI-driven energy efficiency solution; 

facilities that do not match what was planned may ruin an energy efficiency solution. If it is 

not possible to test the AI solution, it is recommended not to invest in it. 

2. **Analyze Compatibility**: There can be potential incompatibilities in between the energy 

efficiency solutions and the existing infrastructure. Objective judgment is needed as some 

incompatibilities are so big that it affects the decision to invest a lot in the energy efficiency 

solutions. Incompatibilities that usually come up are specific IT systems, building types 

and/or appliances, installed control or measurement systems, metering techniques, etc. 

Nonetheless, it is worth revaluating the compatibility situation whenever a facility is 

remodeled or when new appliances are installed, as that can open possibilities for a fit with 

energy efficiency solutions. 
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3. **Integrity of AI-Driven Systems**: AI-driven systems can come with many concerns about 

fraud and security. It can be damaging if a model gets hacked and used in an organization’s 

interest, as sustainability is hard to measure. Focus is needed to find out if the energy 

efficiency solution guarantees safeguards for its proprietary models. In addition, it should be 

made sure that there is a fallback option to keep operations running if the IT or cloud does 

not work. 

Integrating AI-driven energy efficiency can be a challenge for some organizations, but at the 

same time, it can be adopted in a way that prevents major disruptions. Compatibility with 

existing infrastructure is one of the major barriers for facilities to adapt [6]. AI-driven energy 

efficiency solutions will have the biggest impact on facilities that do not already have smart 

building solutions to monitor and optimize energy usage. 

8. Future Directions and Emerging Trends 

With the introduction of Artificial Intelligence (AI) technology, it is anticipated that the 

development and implementation of AI-driven energy efficiency solutions will evolve. More 

AI technologies such as machine learning routines, neural networks, and other AI models will 

be developed and refined. It is envisioned that these AI technologies will progress to become 

commercially viable products. The hope is that such AI-driven energy efficiency solutions 

would provide the needed technological advances to accelerate the shift toward the 

sustainable U.S. manufacture of medicines and vaccines [10]. New avenues of AI-powered 

technology development for energy efficiency will be cultivated. These could involve 

partnerships with American universities, non-profits, and community colleges to provide 

training and educational opportunities. As AI-driven energy efficiency solutions become 

more developed, available, and affordable, the hope is that the adoption of such solutions 

would become more widespread. It is expected there will be a corresponding surge of interest 

in AI-driven energy efficiency offerings from different sectors of the U.S. pharma 

manufacturing industry, growing from the current initial interest to widespread adoption. 

In addition to foreseeable technology advancements, many foreseeable changes in laws and 

regulations to commercial energy efficiency actions, including AI-driven energy efficiency 

solutions, in the U.S. pharma manufacturing industry could facilitate industry adoption. 

Interest in the development of regulations on energy efficiency in the pharma manufacturing 

industry has been growing. While these regulations are not specifically on the developed 
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solutions, there is a natural synergy between the goal of sustainability in pharma 

manufacturing and the goals of energy efficiency solutions developed in the AI ecosystem [4]. 

The experience of the commercial introduction of energy efficiency as a new class of 

compliance technologies (with new processes to comply with regulations that govern 

consumables such as drugs, chemicals, etc.) shows that regulation and legislation frequently 

precede commercial adoption, signing a new paradigm for industry. 

8.1. Advancements in AI Technologies 

Advancements in AI technologies are rapidly transforming the operational landscape of 

various industries, including the U.S. domestic medicine manufacturing sector. By projecting 

a technology scale-up, this study describes potential developments and innovations that could 

lead to the commercialization of AI-driven energy efficiency solutions. In this regard, the 

study focuses on the deep learning workplace dimension and outlines technological 

advancements in the energy management systems and machine learning algorithm domains. 

The energy management systems domain evaluates the potential of controllable technology 

and cloud-based sensors and energy management systems for energy savings. Integrating AI 

into existing physical on-site energy efficiency technologies will more likely yield operational 

excellence dividends, such as stabilized production and improved productivity in mature 

modes of operation. The expansion of machine learning algorithms will provide enhanced 

viability for AI-driven energy efficiency solutions. However, there are still hurdles associated 

with the interpretation of regulatory and liability resolutions regarding industrial AI 

applications and the successful handling of the technology's dependency and brittleness [5]. 

In considering the implications of the projected advancements, the focus is on promoting the 

sustainability imperative in the U.S. medicine manufacturing sector and its operational 

excellence implications. Enhancing the energy performance of energy-intensive industry 

sectors is imperative to combat climate change and promote sustainability [21]. The U.S. 

manufacturing sector is a pivotal part of the economy but heavily relies on non-renewable 

resources and fossil fuels. Furthermore, the energy-intensive domestic medicine 

manufacturing sector produces therapeutic drugs for millions of patients annually. In recent 

years, the biopharma supply segment of the manufacturing industry has grown in domestic 

medicine volume and global market importance with increased public health attention 

spurred by the COVID-19 pandemic. 
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8.2. Potential Regulatory Changes 

In light of increasing relevance of reducing energy consumption in industrial sectors, this part 

details anticipated regulatory and policy changes expected in the United States that will likely 

affect energy efficiency methods in manufacturing medicines. The data needed to identify 

changing regulations is difficult to get. Many of the expected regulatory impacts are indirect 

effects associated with changes to the energy efficiency landscape rather than the result of 

laws or regulations proposed or enacted at the federal, state, or local level. 

There is growing awareness of and concern about greenhouse gas (GHG) emissions associated 

with energy consumed in the United States, which includes 16 percent of all GHG emissions 

from industrial facilities [22]. More than 300 regulatory requirements associated with energy 

efficiency and/or emissions reductions have been proposed or enacted, and they are expected 

to grow quickly. Some states like California and New York have already proposed additional 

regulations aimed at increasing industrial efforts to reduce energy consumption. It appears, 

however, that such states have proposed and enacted regulations that other states will likely 

subsequently consider. As a result, all states with industrial sectors must be ready for the 

enactment of potentially far-reaching regulations affecting energy efficiency and use where. 

9. Conclusion and Recommendations 

The findings of this research provide substantial evidence that AI-driven energy efficiency 

solutions can significantly enhance the sustainability of U.S. medicine manufacturing. Firstly, 

the examination of industry and policy conditions surrounding energy efficiency efforts 

identified an urgent national need for increased energy efficiency in medicine manufacturing 

to maintain cost-effective and competitive practices. This pestering issue, spurred by 

pressures from high energy prices, extreme weather events, and climate change, has 

significant implications for the quality of life of all citizens. In response, the emerging field of 

AI-driven energy efficiency solutions was identified as being at the forefront of this complex 

research area. Several solutions currently existing in various industries were characterized, 

alongside the identification of gaps in the solutions as applied to the U.S. medicine 

manufacturing industry. Qualitative research with industry and policy stakeholders further 

assessed these AI-driven energy efficiency solutions in-depth, revealing both the ambitious 

promise of the solutions combined with the absence of proactive engagement by the industry 

and policy stakeholders. These findings have significant implications for both the U.S. 
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medicine manufacturing industry and the welfare of all U.S. citizens, highlighting the need 

for proactive engagement in the AI-driven energy efficiency solutions space to ensure a 

sustainable medicine supply chain and to otherwise alleviate the national need for increased 

energy efficiency [1]. On a broader scale, the findings have implications for the sustainability 

posture of industries in general, highlighting both the urgency for medicine manufacturing 

industries to adopt internally-focused solutions and the urgency for policy stakeholders to 

adopt nationally-focused solutions. 

To foster the proactive engagement of both industry and policy stakeholders in the field of 

AI-driven energy efficiency solutions within U.S. medicine manufacturing this research 

proposes three actionable recommendations. Firstly, it is recommended that the U.S. medicine 

manufacturing industry create energy efficiency task forces, championed by large 

organizations and inclusive of medium and small organizations, to develop a collaborative 

roadmap for energy efficiency efforts, prioritizing AI-driven energy efficiency solutions. This 

process could comprise the three key steps of gaining a joint understanding of current energy 

efficiency efforts in the industry, exploring opportunities and challenges for implementing 

AI-driven energy efficiency solutions, and creating a unified course of action as an industry. 

Secondly, in support of this effort, it is recommended that state and federally focused 

organizations develop a strategic plan for studying and addressing the implications of the 

work for U.S. medicine manufacturing and leverage the collaborative processes established in 

conjunction with the industry to shape national policy. This strategic plan could comprise the 

four key tasks of assembling a central working group of relevant stakeholders from state and 

federally-focused organizations, developing a strategic research effort to unify understanding 

of energy efficiency in U.S. medicine manufacturing, learning from analogous processes 

undertaken in the Australian and EU industries, and mobilizing resources to enact national 

AI-driven energy efficiency initiatives within U.S. medicine manufacturing. Thirdly, it is 

recommended that policy stakeholders such as the FDA and AMIA build greater awareness 

of the urgent national circumstances increasing the necessity for enhanced energy efficiency 

in U.S. medicine manufacturing, with a particular focus on AI-driven energy efficiency 

solutions [10]. 

9.1. Summary of Key Findings 
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AI-driven energy efficiency solutions can significantly enhance energy utilization and 

sustainability performance in the U.S. medicine manufacturing industry. A comprehensive 

methodology, action plan, and supporting framework have been developed to facilitate 

effective implementation. Researchers have proposed specific approaches and best practices 

to support the successful deployment of energy sustainability analytics tools. Moreover, they 

have evaluated multiple metrics of energy sustainability performance and AI-driven energy 

efficiency solutions. Data demonstrated that AI-driven operational analysis system tools can 

substantially improve the energy utilization and sustainability performance of medicine 

manufacturing facilities in the USA. 

Collectively, this research provides a comprehensive understanding of the development, 

deployment, and evaluation of AI-driven energy efficiency solutions. As energy efficiency 

and sustainability become increasingly important in production operations, these insights will 

advance the adoption and utilization of AI-driven sustainability platforms in other high-

energy consumption industries, further promoting efficiency and sustainability improvement 

in the U.S. manufacturing sector. 

9.2. Implications for Industry and Policy 

[23] 

The transformative potential of AI technologies for the manufacturing sector including the 

medicine manufacturing industry, plant transformation from fitting and fixing to predicting 

and preventing, enabling 24h-monitored and real-time processes, and paving the way 

towards fully autonomous manufacturing plants, processes, and machines. Some issues were 

identified in literature focusing mainly on the pharmaceutical industry (i.e. process 

intensification), having an indirect focus on the circular economy (i.e. modelling BATs 

technology, recycling pharmaceutical compounds), or being too vague to be acceptable, while 

most literature focusing on the energy aspect is oriented on thermal energy consumption (i.e. 

alternative thermal sources, chillers), fuel use (i.e. sustainable biofuel), electricity (i.e. smart 

grids) supply, fuel price effects (i.e. natural gas and petrol), or Energy Management Systems 

(i.e. ISO 50001) [10]. 
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