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1. Introduction 

With looming competition from countries that are rapidly expanding their manufacturing and 

automation efforts, a sense of urgency has emerged around advancing robotics for aerospace 

manufacturing in the USA. This effort would both directly address the shortage of skilled 

workers for aerospace manufacturing and indirectly bolster the existing workforce across 

many manufacturing industries. Recent advances in deep learning, particularly in computer 

vision, natural language processing, and reinforcement learning, open the door for new 

robotic applications previously thought unattainable. Unfortunately, many of these 

breakthroughs are not being actively pursued within the robotics community [1]. The 

effectiveness with which the USA responds to these changes will have ramifications that 

extend well into the future. This report details a robust research agenda applying recent 

advances in deep learning to robotics problems relevant to aerospace manufacturing. 

The goal is to advance robotics and machine intelligence within the manufacturing context, 

facilitating automation with present and future deep learning capabilities. Four significant 

domains of inquiry are identified, each requiring distinct and complementary robotics efforts. 

For each domain of inquiry, an overview of the research opportunity is provided, along with 

specific robot tasks, potential applications, bottom-up and top-down challenges, and 

illustrative uses of existing tech. The urgency of aerospace manufacturing (am) is discussed 

first, followed by an overview of complementary research domains that could reinvigorate 

robotics research in am. An agenda prioritizing efforts within each domain is outlined, 

detailing initial and ongoing work within each. Finally, the anticipated opportunities and 

impact are discussed. 

1.1. Background and Significance 
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The new era of Industrial Revolution 4.0 has forced organizations worldwide to move toward 

smart factories or production plants in order to enhance the performance and operation of 

their manufacturing systems and production facilities. This shift would propel their 

performance beyond one or only couple of dimensions such as cost, throughput, quality or 

efficiency, and take full advantage of cyber-physical technologies. To be able to stay 

competitive, significantly efficient, flexible and robust venues and solutions for cyber-physical 

manufacturing systems must be devised. The intelligent automatic pilot and operation of 

aerospace and envisaged high-speed rail systems above vine globally relevant transportation 

venues requires a smart, intelligent and robust integrated approach. Universal flexible robotic 

manipulators capable of promptly and effectively adapting to different tasks and environment 

conditions utilizing Artificial Intelligence technologies and taking into consideration 

uncertainties, disturbances and constraints in their spatial and end-user requirements 

constitute the core of such solution [2]. So, the significant attention is devoted to modeling, 

presentation (real-time digital twin modeling) and visualization, simulation, design, control 

and robust/optimal automatic guidance of flexible robotic manipulators applied for (but not 

limited to) aerospace components. 

This special session is planned to address recent investigations focused on deep learning and 

AI-enabled control strategies for flexible robotic application in aerospace industry. This 

session invites works on the novel and effective design and control of flexible robotic 

manipulators building on deep learning models (e.g. Feed forward neural Network, 

Convolutional Neural Network, Recurrent Neural Network) and AI technologies (e.g. 

Generalized Neural Networks, Fuzzy Logic, Neuro-Fuzzy, Knowledge based systems) or 

combination of those. Additionally, analysis, modeling, implementation of innovative 

strategy out of the essence of different disciplines such as Robotics, Aerospace Engineering, 

Mechanics and Aeronautics with regard to Neural/Digital Twin Modelling and Control using 

AI technologies is considered relevant. The presentation of industrial application cases is 

encouraged [3]. 

1.2. Research Objectives 

The specific objective of this research is to study the feasibility and the potential effectiveness 

of deep learning techniques in the realm of advanced robotics and to develop and 

benchmarking these techniques in an aerospace manufacturing context. Aerospace (including 
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aircraft, spacecraft, and satellites) design and production is an especially important sector for 

the economy of the United States (US). After a recession in 2020, the US aerospace sector is 

expected to rebound quickly. Automation of the aerospace manufacturing sector has lagged 

behind other manufacturing sectors since many aerospace components are large, high-value, 

complex structures with strict mechanical and thermal tolerances. As these structures are 

conventionally machined separately, there is a need to investigate the potential of advanced 

robotics with deep learning to automate multiple processes such as milling, drilling, 

inspection, and so on, on one robotic platform. A new research initiative is required, through 

which new solutions can be developed or matured. A key need is a laboratory that has both 

advanced robotics and deep learning capabilities in-house [3]. While there are labs with one 

or the other, such as labs that have developed advanced robotic platforms but don’t have the 

necessary controls, vision, or simulation capabilities, few labs have both. 

The deep learning techniques to be studied will be convolutional neural networks (CNN) and 

recurrent neural networks (RNN). CNN will be studied for visual perception tasks such as 

image segmentation and image classification. RNN with long short-term memory (LSTM) 

units will be studied for tasks that have a temporal component such as trajectory prediction 

and control. These deep learning techniques will be integrated into either a mobile or 

stationary robot manufactured in-house. It is expected that significant advances will be made 

in the area of deep learning-based perception and control, and that several peer-reviewed 

publications in high-impact journals or conferences will result. In addition to scientific 

advancements, it is expected that several developments related to advanced robotics will have 

a high industrial relevance [4]. Such developments will include new advanced robotic 

platforms with a variety of perception and end-effector options such as passive compliant 

grippers, machine vision, etc. Furthermore, new applications of advanced robotics will be 

developed for aerospace, biomedical, and agriculture-related contexts. 

1.3. Scope and Limitations 

The focus of this research is on pursuing the application of deep learning techniques in a smart 

robotics system for improving production efficiency and manufacturing competitiveness in 

the aerospace domain of the USA. Improving production efficiency and manufacturing 

competitiveness has been a thrust area in the aerospace domain for decades. Though complex 

and capital-intensive, many innovative processing methods have been developed and 
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adopted in the aerospace sector to improve manufacturing efficiency. In addition to seeking 

advanced processing methods, other areas, such as advanced manufacturing equipment, 

including robotics, inspection, and smart instrumentation & control, are also being 

investigated to improve production efficiency [3]. Commercially, it is believed that the 

efficient use of advanced robotics in complex aerospace manufacturing will improve the USA 

competitiveness. 

Today robotics is more often associated with division of labor and automation of labor-

intensive tasks in manufacturing and assembly. The automation made possible by robotics 

has led to remarkable benefits in manufacturing productivity and quality. Central to the 

envisioned sophistication of robotics for complex processing and assembly is the ability of the 

robots to possess some degree of perception and intelligence with regard to their 

environment. Considering the complexity of the operations and environment, in addition to 

the development of advanced sensors, control algorithm and mechanism consideration, the 

development of learning techniques, for example, neural networks will be essential. The 

aerospace aircraft and transport vehicles are extremely complex from the view point of design, 

geometric configuration, number of components, construction methodology; therefore, the 

surface contour of these components is often non-planar and free form. 

2. Fundamentals of Deep Learning 

This section begins with a brief introduction to deep learning and follows with deeper 

consideration of its fundamentals. Four topics are selected to present the fundamentals of 

deep learning—deep feedforward neural networks, convolutional neural networks, recurrent 

neural networks, and deep reinforcement learning. Artificial neural networks consist of 

processing units organized into layers. A processing unit receives inputs, calculates a function 

of the inputs, and produces an output. The function usually consists of the linear 

transformation of its inputs followed by a non-linear activation function. The output of a 

processing unit is usually connected to the inputs of the units in the following layer. Despite 

this simple architecture, deep feedforward neural networks are universal approximators of 

continuous functions, provided they are sufficiently large [5]. However, it is extremely 

difficult to train networks with more than one hidden layer [3]. 

Deep convolutional neural networks are neural networks that exploit the spatial structure in 

their inputs; they use convolutional layers to reduce the number of parameters and exploit 
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the translational invariance in their inputs. Convolutional layers were inspired by cortical 

neurons in the visual cortex; these neurons respond only to stimuli with a receptive field. The 

pioneering works in neural networks with convolutional layers (CNNs) applied them to the 

task of image recognition. Widespread interest in convolutional layers surged around 2012 

when Krizhevsky used them to dominate in the ImageNet image recognition competition, 

achieving super-human recognition on notable image recognition benchmarks. CNNs have 

become well established as a highly effective deep learning model for a diversity of image-

based applications. 

2.1. Neural Networks 

Neural networks can be thought of as black boxes, which are good for a wide variety of tasks, 

but no one is sure how they work. However, each piece can be examined to build a better 

understanding of how the structure of neural networks function. A neural network is a system 

of nodes working together to fill in a basically given structure. This section first explains the 

essential characteristics of a neural network and describes how neural networks fill in the 

structure. Then it examines how neural networks change based on input and output data as 

well as how they train and generalize, increasing their utility. The section concludes with a 

discussion of different structures employed by neural networks and their advantages or 

displeasures for various tasks [3]. 

One of the most enduring concepts of intelligence is the comparison of human thinking to 

machine processing. Neural networks are structures of “neurons” based on the capability of 

the human brain to create natural and experiential relationships within data or events [5]. 

Likewise, neural networks are a form of machine processing of parallel information usually 

represented by numeric values. A neural network initially has little or no knowledge about 

the dataset it attempts to relate. Instead, a neural network fills in a structure basically given 

(the architecture) while numbers representing data fill in the assigned values of that structure 

(the weights). The weights can be thought of as relationships between represented data in the 

case of a neural network without interaction abilities, or predefined “knowledge” as in the 

case of systems with “expert” information. 

2.2. Convolutional Neural Networks 
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Deep learning techniques, particularly feedforward neural networks known as convolutional 

neural networks (CNNs), have been emerging in the manufacturing community. This 

discussion focuses on basic concepts of CNNs and outlines their uses in manufacturing. 

Different types of data objects encountered in manufacturing can be represented in a flexible 

manner using tensors and graphs. CNNs use convolution operations to extract informative 

features to predict emergent properties and phenomena and/or to identify anomalies. CNNs 

can exploit color as a key source of information, enabling the use of modern computer vision 

hardware [6]. 

As a class of feedforward neural networks, CNNs are distinguished by their use of 

convolution operations in constructing processing layers that extract and combine features for 

classification. Different from general artificial neural networks or multilayer perceptrons, 

CNNs consider the locality of interactions among nodes and share weights for the same set of 

receptive fields. Through these innovative approaches, it is possible to capture complex 

features required for classification while keeping the number of weights to be learned 

relatively small. These features can be extracted hierarchically, in which low-level features 

such as edges or textures are first detected and then combined to build higher-level but more 

complex features such as shapes or objects [7]. 

2.3. Recurrent Neural Networks 

Recurrent neural networks (RNNs) are connectionist models for processing sequential data 

by passing information selectively across sequence steps without attention mechanisms. A 

standard RNN consists of a layer of hidden units which are connected to themselves and to 

input and output units, feeding activations one step at a time. After each input, a new hidden 

activation is executed as a function of the current input and the previous hidden state. This 

representation of past inputs is maintained in the hidden units, allowing for modeling input 

and output consisting of sequences. RNNs are especially suited for sequential data, 

addressing limitations of standard feedforward networks [8]. In feedforward networks, after 

each example is processed, the network loses its entire state, which is unacceptable when 

examples are temporally or spatially related. Further, feedforward networks assume 

independence among training and test examples as well as examples being vectors of fixed 

length. RNNs address this by processing sequences one element at a time while maintaining 

hidden activations representing the entire input sequence. 
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Standard RNNs have connections feeding back from hidden units to themselves, leading to 

hidden unit activations being computed as a function of the current input and the previous 

hidden activations. This sets up a recurrent state that allows holding information across 

sequence steps. The model can be applied to sequences of arbitrary length, avoiding a priori 

segmenting inputs or outputs into fixed-length pieces. In addition to standard RNNs, there 

are a variety of alternative or supplementary mechanisms for processing sequential data, 

including feedforward models with delays, fixed-architecture networks, hierarchical models, 

and models whose parameters change over time [9]. 

2.4. Deep Reinforcement Learning 

[10] [3] 

Deep Reinforcement Learning (DRL) is a promising field of artificial intelligence that applies 

deep learning and reinforcement learning methodologies to develop decision-making agents 

and accomplish desired tasks. A fundamental goal is to learn a policy that enhances 

cumulative reward by facilitating interaction with an environment. Broadly executed and 

studied DRL applications include playing games, robotic systems, unmanned aerial vehicle 

systems, the Internet of things, stock market investment, smart grid development, and wind 

farm control. 

Currently, DRL remains a vastly open area of research. Despite increasing interest, extensive 

proficiency is required beyond coding ability. It is desirable to have a thorough understanding 

of DRL principles and mechanisms. An introduction to DRL is herein elaborated upon, 

including reinforcement learning, deep reinforcement learning, and some contemporary 

methodologies addressing significant problems for agents. For each branch of DRL, 

representative implementations aimed at promoting comprehension and improvement are 

investigated and remarked upon. 

3. Advanced Robotics in Aerospace Manufacturing 

Advanced Robotics (AR) systems are widely used in various manufacturing processes for 

aerospace and automotive industries, such as applications in the assembly of large 

components like aircraft wings, fuselages, and other structural components [2]. Often, there 

are rigid body parts with difficult geometry and complex handling systems (conventional 

machinery and Fixturing and Handling) that can greatly influence the assembly precision and 
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productivity. Other manufacturing techniques can also benefit from AR, e.g., material 

removal processes such as drilling, riveting, milling, etc. As for large parts, collaborative AR 

systems with collaborative robots or cooperative multi-robots for concurrent and synchronous 

tasks are a trend to improve the current productivity [3]. With the impressive development 

concerning programming and perception technologies, different types of robotic arms and 

end-effectors are actively being used in AR systems. The advantage of multi-robot systems is 

that a simple assembly operation can be done by sharing the task into different robots and 

concurrent actions. 

Nevertheless, handling operations of these AR systems (robotic arms) usually involve parts 

with a large scale, heavy weight, and complex shapes (i.e. a lot of undercuts and hidden areas). 

It is very difficult to define the poses for the robot arms, especially for flexible or heavy parts 

with more than one attachment point or with large tolerances in the relative poses of the 

assembly components. Difficulties also arise due to uncertainty in the boundary of the parts 

(e.g. for casted parts), flexibility of LR and/or parts, or complex parts’ geometry (complex 

shapes with undercuts). Therefore, conventional handling systems (Fixturing and Handling 

systems) cannot be applied directly, and handling operations must be done using the parts’ 

own geometrical features. Thus, the perception of flexible assembly poses is of primary 

concern in AR systems applied to complex or massive part assembly. Vision feedback is 

needed for observing the assembly structures concerning the robot arms. Competitiveness 

remains a big problem in this area, especially in the USA, mostly due to the high maintenance 

cost of robot arms. As to the perception system, many existing solutions are too expensive for 

frequently used systems with the above-determined parameters like assembly robotics. 

Bench-mounted laser sensors or robots with vision systems are often situations that would 

not easily satisfy the current performance. A trade-off between the computing time of the 

mobile manipulators and the software solutions for determining the interfaces and controlling 

the movement of the arms would often yield unsatisfactory results for critical situations (i.e., 

robustness, fast reaction time, strict safety requirements). 

3.1. Robotic Arms and End-Effectors 

A robotic arm is an electromechanical system constructively manufactured to mimic the 

structure and flexibility of an arm, capable of carrying and moving different objects. The 

invention of the robotic arm helped free human beings from performing harsh, unsafe, hard, 
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and repetitive activities. Robotic arms are widely used in automotive and heavy industries by 

running simple repetitive tasks such as welding, painting, boring, and picking and placing 

heavy units [2]. A simple robotic arm consists of joints, links, an actuator, and an end-effector. 

The joints in robotic arms can be classified as revolute and prismatic joints. A robotic arm with 

revolute joints is called a rotary robot (RR) arm and the robotic arm with prismatic joints is 

called a linear robot (LR) arm. The robotic arm consists of serial rigid links connected in series 

by joints to perform specific tasks. Depending on the number of degrees of freedom (DoF), 

they are classified as 1-DoF, 2-DoF, 3-DoF, 4-DoF, etc. A 3-DoF arm can rotate in three different 

axis directions and move perpendicularly in three different planes (XY, YZ, and XZ), 5-DoF 

robotic arms are universal arms. Presently robotic arms are used in flexible moves, picking 

and placing light, heavy and delicate objects, inspection, polishing, grinding, washing, in 

simple writing to complex documents, painting and decoration of rough surfaces, etc. [11]. 

The end-effector is a device that provides the interaction between the robot and the external 

environment and facilitates better operations for the robotic system. The design of the end-

effector greatly influences the performance of a robotic system. It can be designed to perform 

several operations like pick and place, avoid obstacles while being transferred, polishing, 

grinding, etc. Design of a robotic gripper-based end-effector for pick and place operation is 

proposed in this paper. The gripper relies on the three-finger and two-finger claws, pincer 

and under hooks, which are palm structures consisting of three protrusions. The three fingers, 

each having a torsion spring, assist their rotation. A simple palm structure with a tooth height 

evenly specified is designed for the two-finger claw without springs to minimize expensive 

parts. It proposed an under hook designed to prevent excessive widths and heights of the 

objects, which may decrease the reliability of the pick and place operations. Designs obtained 

using the optimization method can conduct stable manipulation with more successful rate in 

a wider field of object sizes compared with conventional designs. 

3.2. Sensors and Perception Systems 

Sensors and perception systems are fundamental components of robotic systems that provide 

robots with the capability to perceive the world around them. Acting as the "eyes" of the 

robots, sensors furnish them with spatial awareness and knowledge of their environment, 

which helps distinguish objects of interest from others, avoiding potential accidents in 

populated environments. Sensors can be deployed in robotic systems in a simple or complex 
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organizational structure depending on the mission design and desired performance, and they 

can fulfill several functions related to data acquisition and analysis intended for subsequent 

actions [12]. Several perception systems have been incorporated into robotic systems 

operating in aerospace manufacturing processes. 

The need for human augmentation (HA) systems supportive of human and robotic 

collaboration has become increasingly critical in aerospace manufacturing due to the high 

mix, low volume, and customized nature of products [13]. The more-strict weight and fuel 

consumption constraints than other industries result in a high demand for assembly 

automation and, ultimately, robotization. However, a fully automated production approach 

is broadly deemed infeasible owing to the excessive variations of components and the lack of 

infrastructure preparedness in factories transitioning from traditional mechanics to robotics, 

such as the spatial density of robots being lower than typical machine tools and the need for 

co-existence with large numbers of manual workers. Therefore, a HA-safe robotic assistant for 

assembly manufacturing is proposed, in which a mobile robot equipped with perception 

sensors holds the overall system position, completes fine manipulation situational-awareness 

tasks, and provides augmented reality (AR) visual aids to assembly workers. 

3.3. Motion Planning and Control 

Robotic automation and smart manufacturing have been emerging as the new generation of 

manufacturing technologies for the advanced manufacturing of aerospace components. 

Automated processes in aerospace engineering include the automated low-cost design of 

complex structures and their subsequent automated manufacturing via robotic assembly of 

composite parts, machining operations, etc. Advanced robotic approaches involve the design 

of a robotic launcher with a negotiable compliant control, stereo vision multi-camera systems 

for work space mapping and object recognition, specialized active-grippers fitted to a robotic 

arm for composite preform handling, a dexterous hand equipped with voice recognition for 

human-robot industrial applications, and similar [2]. The trajectory of motion between two or 

more states in the search space is analyzed in terms of position, orientation, time, and velocity. 

Motion planning attempts to break the motion into discrete moves and search a path through 

the free space. To identify a feasible trajectory, it is always necessary to synthesize a model 

that identifies the physical kinematics of the manipulator. Kinematic modeling deals with the 

position and the orientation of the end-effector concerning the world frame, while dynamic 
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modeling describes the forces and torques generated at the actuator level. Based on the direct 

and inverse kinematics offers provided the geometric equations in analytical and vector form 

and developed the algorithm in pseudo-code format [14]. Control is defined as the processes 

that stabilize a controlled variable to prevent unwanted disturbances from affecting the 

controlled variable. Control of robotic manipulators involves controlling the position, 

velocity, and acceleration of its joints and tasks. The joint-controlled robot manipulator is 

defined as a multi-joint single end-effector robot. As the first step of the control design 

procedure, to transfer the manipulator joint co-ordinate variables into Cartesian co-ordinate 

variables, forward kinematics is analyzed. Multiply the respective transformation matrices 

sequentially to get the transformation matrix of the last link concerning the world frame and 

formulate the position and orientation equations of the manipulator in terms of the joint 

angles. The task Jacobian matrix and manipulator Jacobian matrix in the joint space are 

expressed in terms of the manipulator D-H parameters. 

4. Integration of Deep Learning and Robotics 

Deep learning methods have gained prominence within the field of robotics, especially in 

computer vision and perception tasks. High-performance deep learning models are touted as 

providing new opportunities for improving robotic operations. Recent robotic operations, 

such as grasping and manipulation, are enabling a natural integration of deep learning 

techniques with robotics. Vision has been incorporated into many robotic systems, with recent 

developments involving deep learning architectures. The implementation of perception 

modules in robotics has a long history, notably on problems such as object identification, 

localization, and working on RGB-D data sets. 

Several essential topics such as sensor fusion and data preprocessing for deep learning-based 

robotics tasks are elements of interest. Sensor fusion techniques are essential to enrich the data 

being processed and improve the robustness of the networks. Data preprocessing is also 

important for robotics systems as the vision data acquired in real environments are normally 

noisy and need to be filtered or normalized to feed into the networks [3]. Supervised learning 

applied to perform robotics tasks is another topic of interest. Supervised learning is the type 

of learning in which a query example is accompanied by an expected response, or label. The 

last topic of interest is focused on autonomous control through deep reinforcement learning. 

Reinforcement learning is a family of machine learning methods that enables an agent to 
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interact with an environment and learn over time with the aim to maximize a reward [15]. 

This approach is essential for applications such as mobile robotic navigation. 

4.1. Sensor Fusion and Data Preprocessing 

Robotic systems featuring artificial intelligence (AI) and deep learning techniques require the 

utilization of a number of sensors in order to fuse and process the massive amounts of sensory 

information they require for effective decision-making. Sensor fusion refers to the 

combination of data acquired through purposeful activity from several sensors that provide 

significant information to enhance the understanding of a phenomenon. This can be 

implemented using AI methods to create a uniform wheelchair such as overall motion 

perception, location, and environment reconstruction [16]. This section discusses the 

techniques for sensor fusion, in conjunction with preprocessing its data, implemented within 

this thesis robotic framework. In the case of the robotic arm, cameras and IMUs are combined 

to perceive the spatial robot joint states, in addition to lip-sensing cameras for grasp quality 

estimation, while a camera and Li-DAR are fused to portray the surrounding environment 

map within the wheeled robot. Finally, after considering the possible low-level 

implementations for the utilized sensor fusion algorithms, it is discussed how AI 

methodologies are applied to intelligently utilize this plethora of integrated sensors and 

several sensory modalities. Such intelligence is crucial for the learning and performance 

enhancement of AI-driven automatons and robots [7]. 

4.2. Supervised Learning for Robotics Tasks 

For robotics tasks related to advanced robotics in aerospace manufacturing, deep learning 

techniques associated with supervised learning are being examined in this section. Supervised 

learning, which can be used to train a model on a specific manufacturing function when 

enough labeled data exists, is focused on (1) robustness to model perturbation, (2) robustness 

to challenging object characteristics, and (3) accurate estimation of model performance [3]. In 

this sense, the supervised learning techniques outside of the deep learning domain are 

reviewed first. Next, the deep learning approaches developed recently for manufacturing 

functions and compatible with supervised learning techniques are presented. 

The deep learning approaches consist of (1) Object Shape Configuration Selector for Part 

Insertion, (2) Automated Neural Network Hyper-Parameter Selection/Training Tool for State 
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Estimation, and (3) Deep Functional Part-Geometric Modeling for Product Robust Quality 

Improvement. They are already applied to or currently being developed for a solid product 

in the aerospace industry [2]. To enhance their robustness or accuracy in the design stage of 

automation, the aforementioned objectives are pursued based on the one or two concepts in 

the deep learning domain. Some studies on the effort to commercialize the corresponding 

product or techniques will also be presented. 

4.3. Reinforcement Learning for Autonomous Control 

Recent years have seen a shift of attention from supervised learning to reinforcement learning 

(RL) to achieve autonomous control in robotics [15]. The essence of RL is an iterative learning 

process. A control policy is learned to maximize a reward signal that indicates the 

performance of the decisions made; thus reinforcement signals guide the search of the most 

appropriate controller similar to the way people learn to play basketball or chess by obtaining 

rewards (e.g., success, win) or penalties (e.g., failure, lose). In robotics, this control policy 

learned through RL can then be used for on-line autonomous decision making for robots and 

manipulators with a wide variety of applications, including autonomous vehicles, 

manipulations, walking patterns, bicycles, humanoids, and flying vehicles [2]. Because this 

approach is a natural way to achieve autonomy and intelligence in machines, RL is a 

promising candidate for advancing autonomous capabilities. 

5. Case Studies and Applications 

Automation of aerospace manufacturing demands smart application of robotic systems. With 

the advances in the machine vision and robotics, there is a need to enhance the overall 

efficiency and competitiveness of aerospace manufacturing in the USA via a deep learning-

driven robotics and automation approach. In this paper, different aspects of deep learning-

driven robotics and automation are explored with a special focus on the applications and case 

studies in the aerospace manufacturing scenarios. Case Studies and Applications of Deep 

Learning-driven Robotics in Aerospace Manufacturing [17]. Automation of aerospace 

manufacturing demands smart application of robotic systems. With the more and more 

complicated components and structures to be inspected, there is a pressing need to develop 

fully automated inspection systems instead of manual inspections (e.g. fluorescence penetrant 

test). With the advances in the machine vision and robotics, such an inspection system can be 

developed by integrating a multi-vision machine system and a robot. The basic idea for the 
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robotic ultrasonic testing (RUT) system is to design and develop the commercial robot 

systems, multi-vision machine systems, combined computer processing systems, and 

industrial PCs to perform contour-following inspection for critical aerospace components and 

structures [3]. Data and information are elaborately processed on-line and fed back to the 

robotic systems, so that a precise inspection path and rig can be generated to perform, on the 

one hand, a time-efficient and safe-test, and on the other hand, prevent the impairment of the 

components to be inspected. The basic concepts and principles are outlined, and real-life 

commissioning cases in aerospace manufacturing and machining industries are given to 

illustrate the effectiveness of the approaches. With the more and more complicated structures 

of aerospace components, such as intricate contoured surfaces, special materials (e.g. 

composites, alloys, and super alloys), and complicated manufacturing processes (e.g. welding, 

casting, and machining), there is a pressing need to develop precision automation in the 

manufacture process. A deep learning-based vision is applied to a robot cell in order to 

enhance the precision in the assembly process. A base robot select and present several knobs 

on the assembly line to a subordinate Novinter robot that performs assembly. The robot is 

equipped with two cameras and a calibration camera that is used to refine the 3D position of 

the knob. Besides a description of the system, images acquired by the robots at different 

positions are used to illustrate the robustness of the implemented vision system in the 

different views of the knob. The knobs are presented to the vision system as a bounding box 

and therefore a 2D image matching is performed on the images. The knot is then assembled 

on the wire harness, and the assembly position is targeted to the middle of the knob. This 

target is transformed into a set of commands for a motron servo of demeanour of a compact 

size and lightweight. Hence, the overall assembly precision is enhanced by 1.118 mm, and it 

is guaranteed that the knob will engage to the wire harness in a safe manner preventing 

mechanical damages. In view of commercial and competitive models of robotics, the robotic 

assembly cell modularity architecture is presented as a set of individual modules that can 

operate independently or integrated together. 

5.1. Automated Inspection Systems 

Automated inspection systems are smart and automated systems designed to detect defects 

on products coming from production lines. Systems using deep learning techniques can be 

classified as automated inspection systems consisting of a conveyor, a camera to acquire 
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images, and a computing unit on which the deep learning model is trained and runs. The deep 

learning model inspects products by determining whether they are defective or acceptable. 

This type of defect detection system can be implemented with a cycle time of one second or 

less, enabling a substantial increase in the lot’s inspection speed along with maintaining a high 

detection performance. Therefore, the competitiveness of the relevant industries can be 

increased by a thorough application of this technology [18]. 

For illustration purposes, an automated inspection system using a convolutional neural 

network (CNN) for defect detection on a crop product is described here. The focus is on the 

system design and operation rather than the technical aspect of the deep learning model itself. 

The methodology and the learnings from implementing automated inspection systems not 

existent in the literature are summarized to give helpful hints to organizations considering to 

employ deep learning techniques in their inspection processes [13]. Automated inspection 

systems can enhance the aerospace manufacturing business by improving the quality of 

manufactured products while reducing cost and enhancing process efficiency. Both moral 

obligations and legal requirements necessitate a high degree of quality in aerospace 

manufacturing. However, maintaining a high-quality level usually comes at the expense of 

low process efficiency. Therefore, the policies within a company, or the modes in which one 

company competes against another, can be either high target quality, fast production speed, 

or low cost. 

5.2. Precision Assembly Processes 

Precision assembly is one of the key manufacturing processes in aerospace that require 

micrometer-level accuracy and submillimeter tolerance. In aerospace component 

manufacturing, precision assembly with fixtures/stoppers is the most prevalent method. 

Because of the constraints on components around assembly locations, traditional assembly 

workflow programming methods are not ideal. There are concerns regarding robustness, 

simplicity, ease of use, and cycle time optimization [19]. Therefore, a deep learning-based 

assembly workflow optimization framework generating assembly workflows with 

modification locations, sequences, and working poses has been developed. Schematic 

assembly structures are extracted from CAD models to represent attachment relationships 

and to guide deep learning model training. The trained models predict modification 
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parameters in a component pair with a similar assembly structure during component 

matching. 

Both ideal and perturbed assembly structures have been tested by the path planner on the 

two-generation dataset. The utility of deep learning-based assembly workflow generation 

helps lock-in deep learning-based design thinking, which reduces the time and complexity. 

The proposed assembly workflow generation method is based on deep learning techniques, 

which makes it adaptable to various component designs. Generative design techniques can 

be integrated into CAD model-based assembly design evaluation and modification strategies, 

utilizing CAD models with newer component designs [20]. 

5.3. Real-time Adaptive Control Systems 

In the context of smart factories and Industry 4.0, there is a growing interest in using real-time 

adaptive control systems in mechanical manufacturing and assembly operations. Deep 

learning-driven adaptive control systems are exceptional at understanding the factors that 

cause variability in manufacturing processes. These systems can dynamically adjust the 

manufacturing process in real time based on incoming external and environmental stimuli . 

This allows manufacturers to achieve a greater tolerance of operation in the presence of 

unexpected deviations and disturbances. But how can the assembly/adaptive control systems 

be made so smart that they can efficiently deal with large redundancies and unpredictable 

variability/situations? The answer comes from advanced data acquisition techniques and 

state-of-the-art artificial intelligence (AI) approaches [2]. The understanding of mechanical 

and manufacturing processes can be enhanced and transferred to a control system so that it 

can learn the process and adapt its control actions accordingly. 

6. Challenges and Future Directions 

The application of deep learning techniques in advanced robotics for aerospace 

manufacturing presents several challenges that need to be addressed. Firstly, there is a need 

for high-quality data to train deep neural networks (DNNs) that are used for motion planning, 

control, and decision-making [3]. Alternatively, the possibility of acquiring training data 

using hardware prototypes is also addressed. However, designing and conducting 

experiments using hardware prototypes can be a time-consuming and costly endeavor. Future 
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works should focus on developing and implementing techniques based on cloud robotics that 

address the issues and limitations of both sides while leveraging their benefits. 

A second challenge is the interpretability and explainability of the decisions generated by a 

deep learning model [2]. After providing the prediction of the model, it is essential to provide 

additional information that highlights the reasons behind each prediction, allowing validation 

that the DNNs are not learning trivial correlations not representative of the real-world 

problem. This literature aims to highlight the areas of improvement for future work in the 

aerospace domain. 

A third challenge is the safety of the actions outputted by the deep learning model in a new 

context. DNNs with high generalization capabilities (i.e., capable of providing reliable outputs 

in contexts that are significantly different from those encountered during training) must be 

developed. Data augmentation techniques can be used to design a more robust training 

dataset or generative models capable of producing realistic synthetic data. However, this 

remains a major challenge in the aerospace domain, where flight conditions (hardware, 

environment, and disturbances) can be radically different despite compromised operational 

conditions. 

Finally, ethical considerations regarding aerial missions (e.g., privacy and security) and the 

social acceptance of advanced robotics deploying deep learning techniques should be 

mentioned. Safety assurance and risk assessment methodologies for design and operation 

should be developed, and scenarios should be studied to demonstrate the potential 

advantages of deploying DNNs in advanced robotics. 

6.1. Data Quality and Quantity 

The successful application of deep learning techniques for robotics in aerospace 

manufacturing in the USA is challenged by both data quality and data quantity. These 

challenges are paramount for deep learning techniques to successfully address the application 

needs. While challenges related to data quality and data quantity have been studied 

separately, they are discussed together here as they are intimately intertwined. First, the data 

quality challenges, including the type of data for training and execution, data collected from 

the physical world, and the data processing task itself, are analyzed in detail. Then, the data 

quantity challenges, including the cost and time to generate data collections, and 
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considerations for human and physical dimensional data, are discussed in detail [20]. Finally, 

a future outlook on potential solutions to address both data quality and data quantity 

challenges is provided considering technological and process advances within the robotics, 

deep learning, simulation, and digital twin domains. 

Robotics is an important application area for deep learning techniques, where the input data 

often contain high-bandwidth signals from the physical world, such as images, point clouds, 

audio, 6D poses, etc. With advancements in sensor technologies, high-dimensional and high-

volume data signals from the environment can be collected, leading to better performance and 

capabilities for robotic systems. Nevertheless, the training and execution data at the network 

level must conform to a specific type and dimension, which usually requires further 

processing tasks, such as perspective conversion, background removal, simplification, 

augmentation, etc. Therefore, while the raw data available for robotics may be plentiful, the 

signals that can directly feed into the networks are often severely restricted. These 

complicated processing tasks introduce challenges for data quality as they entail many 

manual steps that can compromise the performance of trained networks if improperly done 

[21]. 

6.2. Interpretability and Explainability 

A formidable challenge for AI engineers is to make their models interpretable. AI systems are 

often perceived as black boxes. Even more than other machine learning techniques, the 

performance of neuro-network based decision systems is poorly understood [22]. Technically, 

it is difficult to relate the performance of deep learning models to network parameters and 

architecture. Operationally, it is difficult to present explanations of deep learning system 

performance in an intelligible manner. Unfortunately, the lack of transparency is a major 

shortcoming, particularly in safety-critical applications like self-driving cars or in medical 

diagnostics and treatment, where trust in a model’s predictions is a pre-condition to its 

successful operation. In accordance with the IEEE 7001 standard, ethic principles of 

transparency, accountability, and responsibility have been formulated. However, presently, 

even though model accountability may be provable, model interpretability is far from 

guaranteed. 

The AI techniques and their interpretations should receive much attention in the future 

development of AI-based robotics for aerospace manufacturing systems since the 
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advancement and understanding of these AI techniques and their interpretations greatly 

affect the ethics, responsibility and performance robustness of these AI systems [23]. For 

applying deep learning techniques in autonomous robotics for aerospace manufacturing 

systems, in addition to ensuring their good performance and reliability, similar attention 

should be paid to the deep learning model interpretability. Because the aerospace 

manufacturing systems involve high value-added objectives with high requirements in safety, 

completion accuracy and time, and complying with strict release time, adopting bias and 

wrong deep learning robot controls without understanding their causes will result in great 

losses. 

6.3. Safety and Ethical Considerations 

Safety and ethical considerations must not be overlooked when developing and deploying 

deep-learning-driven robotics for aerospace manufacturing. Advanced robotics systems 

deploying emerging technologies, including robust artificial intelligence (AI) and deep 

learning applications, should ensure they are responsibly and safely designed, manufactured, 

and integrated. The integration of robotics and deep learning technology under the Fourth 

Industrial Revolution provides opportunities for more efficient manufacturing processes [24]. 

However, various safety and ethical concerns arise with these developments that must be 

appropriately managed. This paper aims to address the need to properly consider safety and 

ethical perspectives when developing and deploying deep-learning-driven robotics used in 

aerospace manufacturing, assisting aerospace manufacturing companies to remain 

competitive in the USA. Concise, fact-based lists of safety and ethical considerations to 

address when deploying the aforementioned technologies are presented. Furthermore, 

mitigation measures and frameworks to address these concerns are provided. 

Great advancements in robotics technology, especially with improvements to artificial 

intelligence and machine learning capabilities, are driving improvements to manufacturing 

processes across industry sectors. The aerospace manufacturing sector is attempting to keep 

pace with these developments by identifying how to introduce advanced robotics systems 

into production processes. Recently, a potential proposal to deploy deep-learning-driven 

robotics for a specific aviation component manufacturing process has been developed. 

However, as with any robotics or automation application, safety considerations must be at the 

forefront of the robotics system development. Furthermore, with advancements in artificial 
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intelligence driving robotics systems capabilities, there is a growing need to understand the 

associated ethical implications of AI systems [25]. 

7. Conclusion and Implications for the USA Aerospace Industry 

Aerospace manufacturing is among the most advanced sectors in the United States. However, 

excellence comes at the high price of complexity; aerospace products are far more complex 

than any contemporary consumer product. This complexity is compounded by the fact that 

most batches of aerospace products are produced in low volumes. Thus, aerospace 

manufacturing is a challenging field where big tech companies and deep learning enthusiasts 

are flocking. Recently, there have been efforts to explore the potential of neural networks 

applied to the space industry. Some of these efforts have been experimental, while others have 

already matured into commercially available products, tackling various areas and activities 

such as simulation, design, assembly, testing, and inspection. Robustness to complexity and 

uncertainty makes deep learning an intriguing candidate for aerospace manufacturing. 

Nevertheless, there are a myriad of considerations to address before employing advanced AI 

techniques like deep learning within production. Hence, deep learning applications within 

aerospace manufacturing are presented here, along with their potential implications for the 

USA aerospace industry. 

Big tech companies embrace deep learning techniques for various activities within aerospace 

manufacturing. In the realm of simulation, motion prediction of other aircraft with deep 

learning models has matured into commercially available products used in full mission 

simulators. In addition, the automatic generation of simulation scenarios is being explored. 

Regarding design, designs generated from simulation models containing a physics-based 

element, commonly known as surrogate models, have matured into commercial products. 

More recently, there has been increasing interest in employing deep learning as a surrogate 

model in physics-based simulations. As for testing, the application of deep learning 

techniques for damage detection has matured into commercially available products; however, 

they only target simple structures. As for inspection, deep learning techniques have been 

successfully experimented with in non-destructive testing; however, no indication of maturity 

was observed. Common for these applications is tackling various forms of visual data, which 

is not surprising as deep learning and computer vision techniques have matured into 

commercial off-the-shelf solutions. Moreover, the majority of the deep learning applications, 
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especially commercial ones, have taken the form of either add-ons to existing tools or single-

function tools that only target specific issues. This targets concerns of robustness and 

uncertainty when employing advanced AI technologies. However, aerospace manufacturing 

is complex, and the monetary and time costs can be detrimental to simple add-ons. These 

dynamically adapted simulators are evaluating the performance of raw Airbus A380 flight 

control surface deflection data models on simulation environments. 

Deep learning methods are being applied to the design of aerospace manufacturing systems 

to ensure robustness to complex, uncertain environments. The implications of such efforts for 

the USA aerospace manufacturing industry, considered a significant stakeholder, are 

analyzed. Robustness, interpretability, and trustworthiness issues arise when employing 

black-box deep learning methods within aerospace manufacturing, which motivates the 

transparent employability of simpler AI techniques. Currently available AI techniques that 

are simpler than deep learning and generalization in terms of system complexity are time and 

monetary cost-efficient. Specifically for simulation, complexity, uncertainty, and market 

pressure issues related to aerospace manufacturing challenges pre-trained aircraft models on 

simple, low-dimensional dynamics. 
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